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Recent mammalian microarray experiments detected
widespread transcription and indicated that there may be
many undiscovered multiple-exon protein-coding genes. To
explore this possibility, we labeled cDNA from unamplified,
polyadenylation-selected RNA samples from 37 mouse tissues
to microarrays encompassing 1.14 million exon probes. We
analyzed these data using GenRate, a Bayesian algorithm
that uses a genome-wide scoring function in a factor graph
to infer genes. At a stringent exon false detection rate of
2.7%, GenRate detected 12,145 gene-length transcripts and
confirmed 81% of the 10,000 most highly expressed known
genes. Notably, our analysis showed that most of the 155,839
exons detected by GenRate were associated with known genes,
providing microarray-based evidence that most multiple-exon
genes have already been identified. GenRate also detected
tens of thousands of potential new exons and reconciled
discrepancies in current cDNA databases by ‘stitching’ new
transcribed regions into previously annotated genes.

Mammalian genome and transcript sequencing efforts indicate
that most protein-coding genes have already been identified1. But
microarray-based analyses suggest that polyadenylated transcripts are
produced from a considerably larger proportion of the genome,
including regions that are conserved and seem to be noncoding, as
well as regions that contain potential coding exons2.

To reconcile this discrepancy, we reasoned that much of the
functional mammalian transcriptome could be rapidly identified
and characterized by surveying exon expression across multiple
normal tissues, because most known genes consist of exons and are
expressed at different levels across tissues and developmental states.
We designed microarrays3 containing 1,140,421 sequences selected
from the combined outputs of five exon-finding and gene-like
sequence detection algorithms (GenScan4, HMMGene5, GrailEXP6,
BlastX and BlastN) applied to the mouse genome7. We expected the

resulting set of putative exons to have broad coverage because we used
low stringency settings for the search algorithms (Supplementary
Methods online). The resulting set of putative exons was more than
five times larger than the set of exons in known genes. We analyzed
data from a previous study8 to select twelve tissue pools, encompass-
ing 37 different tissue samples (Table 1), in a way that maximizes both
differential expression between pools and global activity in every pool
(Supplementary Methods online). We analyzed wild-type mouse
tissues, rather than cell lines, to ensure that genes contained in the
pools were expressed under normal physiological conditions. To
achieve high fidelity, we hybridized unamplified first-strand fluor-
labeled cDNA obtained from polyadenylation-purified mRNA primed
with oligo-dT and random nonamers (Supplementary Methods
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Table 1 Compositions of the 12 mRNA pools analyzed

Pool Composition (mRNA per array hybridization)

1 Heart (2 mg), skeletal muscle (2 mg)

2 Liver (2 mg)

3 Whole brain (1.5 mg), cerebellum (0.48 mg), olfactory bulb (0.15 mg)

4 Colon (0.96 mg), intestine (1.04 mg)

5 Testis (3 mg), epididymis (0.4 mg)

6 Femur (0.9 mg), knee (0.4 mg), calvaria (0.06 mg), teeth and

mandible (1.3 mg), teeth (0.4 mg)

7 15-d embryo (1.3 mg), 12.5-d embryo (12.5 mg), 9.5-d embryo (0.3 mg),

14.5-d embryo head (0.25 mg), embryonic stem cells (0.24 mg)

8 Digit (1.3 mg), tongue (0.6 mg), trachea (0.15 mg)

9 Pancreas (1 mg), mammary gland (0.9 mg), adrenal gland (0.25 mg),

prostate gland (0.25 mg)

10 Salivary gland (1.26 mg), lymph node (0.74 mg)

11 12.5-d placenta (1.15 mg), 9.5-d placenta (0.5 mg),

15-d placenta (0.35 mg)

12 Lung (1 mg), kidney (1 mg), adipose tissue (1 mg), bladder (0.05 mg)
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online). This technique generated a data matrix of 1,140,421 exon
expression profiles across the 12 tissue pools. Figure 1a shows a subset
of the expression data. The data are available from our project website,
along with an interface (linked to the University of California Santa
Cruz genome browser9) that enables browsing of microarray data, ab
initio exon predictions, mappings of known genes and genes predicted
by our analysis.

Detection of transcripts in exon and genome tiling data is influ-
enced by cross-hybridization, probe sensitivity, probe noise and
experimental procedures, among other variables. Previous analyses
detected transcripts by applying thresholds to individual signal inten-
sities, correlations of coregulation patterns in multiple samples, the
number of consecutive probes that constitute a ‘hit’ and genomic
distances between probes10–15. Substantial increases in detection
sensitivity can be gained by analyzing multiple samples jointly. In

particular, because most multiple-exon protein-coding mammalian
genes vary in expression to some extent across tissues8, a subset of
similar expression profiles from probes derived from putative
exons that are close to each other in the genome can be taken as
evidence of a functional transcript10. A disadvantage of previous
applications of this approach is that decisions to link putative
exons are irreversible. In particular, a decision to assign a probe to a
particular transcript removes the probe from further consideration,
even if another transcript that is better suited to the probe emerges
later in the analysis.

To carry out a global analysis of our microarray data, we derived a
genome-wide scoring function that describes relationships between
hidden variables and expression profiles. Figure 1b provides a
graphical depiction of the relationships between n microarray
probe signals, each containing 12 expression levels, and hidden
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Figure 1 Example of results and illustration of analysis method. (a) Sample of exon-resolution data and GenRate output from the positive strand of

chromosome 4, map positions 32833512–33300999 (build 33) from left to right. Colored rows indicate the origin of the exon prediction, sequence

matches to cDNAs in six databases, the expression data (scaled from minimum to maximum), the maximum log-probe intensity and the GenRate-predicted

genes at 2.7% exon FDER. A change in color of a cDNA database match indicates the beginning of a different transcript. Similar views for the entire data

set are available at our project website. This example shows that GenRate can correctly connect together erroneously disjoined sequences in gene databases

and that coregulation across tissues can be more useful than probe intensity (purple or black track) for detecting genes. HS, human; MM, mouse. (b) The

factor graph that GenRate uses to find CoRegs in microarray data. Each black box corresponds to a local scoring function that depends on nearby hidden and

observed variables, as indicated.
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variables, including transcription start and stop sites; relative
transcript length; a true or false flag for each putative exon; and
the sensitivity, cross-hybridization level and additive noise level
for each probe. This network is formally called a factor graph16, and
the global score (probability distribution) is equal to the sum
(product) of a large number of local scores (probability functions).
Each local score reflects how well neighboring observations and
hidden variables match. Our technique, called GenRate (generative
model for finding and rating transcripts), uses the max-product
algorithm to efficiently find the globally optimum score (B.J.F.,
Q.D.M. & T.R.H., unpublished results) and identifies sets of probe
signals, called CoRegs, that represent coregulated transcription. By
maximizing a global scoring function, GenRate achieves higher
sensitivities than standard clustering techniques (Supplementary
Methods online).

To validate the reliability of the predictions made by GenRate,
we used a permutation test (i.e., randomly reordering the probes) to
estimate exon and CoReg false detection rates (FDERs), the fraction of
detections that are expected to be false. To limit effects of cross-
hybridization noise, we applied GenRate to the 837,251 probes that
map uniquely to build 33 of the mouse genome. By varying GenRate’s
sensitivity, we obtained exon and CoReg FDERs varying from
0.13% to 32% and from 0.2% to 37%, respectively.

To test GenRate’s ability to recover previously annotated exons, we
compared our predictions with exons mapped from human and
mouse genes in six cDNA databases, as well as transcripts detected
in a recent human liver microarray analysis15. At a stringent exon
FDER of 2.7%, GenRate detected 155,839 exons (4,186 expected false
detections) comprising 12,145 CoRegs. GenRate detected 64% of the
exons in the 17,577 RefSeq Golden Path mouse genes and identified
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Figure 2 GenRate detects exons with high sensitivity and high specificity.

(a) A comparison of exons detected by GenRate with mouse and human exons

in RefSeq and Ensembl, in addition to exons in the FANTOM2 and Unigene

databases. (b) Distributions of maximum probe signal intensities for RefSeq

exons, probes detected by GenRate, non-RefSeq exons and probes not detected

by GenRate. GenRate detects many probes that have low intensity but

correspond to known exons and rejects many probes that have high intensity

but do not correspond to known exons. (c) Accuracy versus recall of GenRate

for various gene size categories (number of exons), and the method of
thresholding the probe intensity. A comparison with a previously reported

system15 (Bertone) using closely corresponding regions of the mouse and

human genomes (Chromosome X) shows that GenRate achieves higher

accuracy and recall. The portion of each recall level expected to be due to

false detections is indicated for several points on the plots.
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70,913 putative new exons. We next expanded our comparison set to
include all mouse and human genes in the RefSeq and Ensembl cDNA
databases (Fig. 2a). GenRate detected 116,118 (52%) of the exons in
these databases and identified 39,721 putative new exons. We also
expanded our comparison set to include all previous annotations,
including poorly characterized expressed-sequence tags (ESTs) and
cDNAs in the FANTOM2 and Unigene databases (Fig. 2).

Notably, GenRate detected known exons whose probe signal inten-
sities were below the median intensity and rejected putative exons
whose probe signals had high intensity but were not coregulated
(Fig. 2b). We compared the sensitivity and specificity of GenRate with
results from a recent study of expression in human liver15. At an FDER
of 2.9%, their system identified 13,889 exon-size transcripts, 4,931 of
which corresponded to previously annotated exons. At an FDER of
2.7%, GenRate detected B11 times more exons (155,839) and
confirmed B24 times more previously annotated exons (116,118).

We also estimated accuracy using the fraction of detected exons that
map to the reference set of RefSeq genes. Figure 2c shows the accuracy
of GenRate as a function of the fraction of RefSeq exons that are
detected (recall), for various sizes of genes. As expected, the recall of
GenRate for exons in short genes (o5 exons) was low, because there is
less evidence of coregulation. Figure 2c also shows the accuracy versus
recall obtained by applying a threshold to the maximum intensity for
each probe. For all but high levels of recall, where false detections are
expected to dominate predictions for all methods, GenRate had
substantially higher accuracy than intensity thresholding. We com-
pared the accuracy versus recall of our system with the previously
reported system15 on the X chromosome. GenRate achieved higher
accuracy over a much wider range of recall levels (Fig. 2c) and
achieved higher recall levels with a much lower fraction of expected

false positives. Intensity thresholding in our data also achieved
substantially higher accuracies than the previously reported system15,
partly because we used a wider selection of tissues.

We next studied all CoRegs detected by GenRate and how they
compared with RefSeq genes. At an exon FDER of 2.7%, GenRate
detected 12,145 CoRegs, of which 412 (3.4%) were expected to be false
detections. Figure 1a shows a sample of the output at this FDER
and shows two general trends: (i) long transcripts, which are the
most difficult to clone, could be identified by this approach; and
(ii) coregulation of expression among adjacent probes yielded sub-
stantially different predicted transcripts than would be identified by
probe intensity level alone. The mean and median number of exons
per CoReg were 12.8 and 10, respectively, and the mean and median
genomic lengths were 67,592 bp and 29,483 bp, respectively. GenRate
detected 11,395 (51%) RefSeq genes, including 8,121 (81%) of the
10,000 RefSeq genes most highly expressed in our data.

Despite the high sensitivity of our system, we did not detect a
substantial number of CoRegs consisting entirely of exons not
included in any of the databases (Fig. 3a). At an exon FDER of
2.7%, only 332 of the CoRegs were entirely new and only 96 of these
did not overlap substantially with RepeatMasker sequence (i.e., these
CoRegs contain less than 10% of exons that map to RepeatMasker
sequence). On average, 83 CoRegs detected in the randomly permuted
data consisted entirely of new exons, suggesting that most, if not all, of
the 96 new CoRegs not found in RepeatMasker are false detections.
To confirm this prediction, we tested 35 of them by RT-PCR, using
primers that bridge putative exons and distinguish spliced transcripts
(Supplementary Table 1 online). For 18 of these, we obtained
products of some form after repeated attempts, but sequencing
confirmed in all cases that the product was aberrant amplification
of either genomic sequence or nontargeted highly expressed
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Figure 3 Performance of GenRate on detecting genes. (a) False detection

analysis. The number of CoRegs identified in the randomized probe data

(horizontal axis; average over ten repetitions) and the original probe order

(vertical axis) is plotted. (b) False negative analysis. For each false detection

level (horizontal axis), the fraction of false negative calls among RefSeq

genes (vertical axis) is plotted.

Figure 4 New exons detected by GenRate and associated with RefSeq

Golden Path genes are categorized by 3¢ or 5¢ extensions of known genes,

bridges that join together known genes, new exons that map to an EST or

cDNA in the FANTOM2 or Unigene database, new exons that can be

stitched together with the known gene by a previously detected EST or

cDNA, and new exons that do not map to any previously detected

sequences. The expected number of false detections is 4,186. This
analysis was repeated for new exons that were detected among the

probes with maximum signal intensity above the 90th percentile.

Among these exons, the fraction of completely new exons decreased

and the fraction of new exons that are confirmed by ESTs or cDNAs

that overlap with known genes increased.
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mRNAs. In contrast, we obtained correct RT-PCR products
for 475% of known genes from the same samples in the first attempt
(ref. 8 and data not shown), indicating that our RT-PCR technique
was reliable.

How comprehensive is the set of CoRegs predicted by GenRate?
Figure 3b shows the fraction of RefSeq genes not detected by GenRate
(i.e., the rate of false negative calls) for the same numbers of false
detections shown in Figure 3a, among the 10,000 RefSeq genes that
were most highly expressed in our data. The low false negative rates in
combination with the lack of a significant number of new CoRegs
detected by GenRate provides compelling evidence that almost all the
multiple-exon genes with expression in the 37 tissue pools we studied
are already known.

We next examined the relationship between exons detected by
GenRate and 17,577 well-characterized RefSeq Golden Path genes.
Figure 4 shows the number of detected exons in each of several
categories, including extensions of RefSeq genes, bridges joining
RefSeq genes, new exons in RefSeq genes that map to cDNA or EST
databases (FANTOM2, Unigene and Ensembl mouse and human) and
completely new exons in RefSeq genes. To be especially stringent
in making predictions, we repeated this analysis for exons detected
by GenRate whose maximum probe intensities were above the
90th percentile.

Two lines of evidence indicate that most of the new exons that we
identified are valid. First, there is a bias against new exons internal to
RefSeq genes (Fig. 4), where errors or omissions are least likely, and a
corresponding bias toward new exons flanking cDNAs in Unigene or
FANTOM2, which are most likely to be incomplete. Second, we
verified new exons by RT-PCR experiments. For example, CoReg
BF_C4_2262 (Fig. 1a) is fragmented in current mouse cDNA and EST
databases; virtually all the exons in this CoReg are contained in a
single transcript of 411 kb (Supplementary Table 2 and Supple-
mentary Fig. 1 online), which seems to be the mouse homolog of
Midasin, the largest gene in yeast17, and which has not been com-
pletely identified by comparison to its human counterpart (Fig. 1a).
More than half of the CoRegs included at least one exon that did not
map to the best-matching cDNA, and so our analysis provides a
revised view of the potential exon composition of mammalian genes.

Many of the new exons detected by GenRate reconcile discrepancies
in current gene databases. For example, GenRate detects 3,266
non-RefSeq exons that are internal to RefSeq genes and are confirmed
by sequences in the FANTOM2 or Unigene databases. There are also
examples where GenRate detects a CoReg that bridges together
distinct, neighboring cDNAs. Because such a CoReg may correspond
to two separate but coregulated genes, we used RT-PCR to confirm
that the longest such example in our data is expressed as a single
transcript (Supplementary Table 2 online).

The International Human Genome Sequencing Consortium
recently estimated that the human genome contains B25,000
protein-coding genes (presumably, this is similar for mouse), of
which most have already been identified by transcript sequencing1.
In contrast, previous tiling microarray analyses10–15 focused on the
discovery of thousands of new transcripts in intergenic regions, in
introns and antisense to known genes. Although some of these have
been confirmed by RT-PCR13–15 and, in some cases, distinct molecular
species have been identified by northern blotting, rapid amplification
of cDNA ends or cDNA cloning14,18,19, the function and origin of
these transcripts is largely unknown. Thousands of putative new
transcripts probably evolve at a neutral rate20, suggesting that their
function (if any) is independent of sequence. These transcripts might
be ‘cryptic’, potentially resulting from incomplete quality control in

Pol II transcription21, or simply undegraded fragments of hetero-
geneous nuclear RNA, as more than half of the genome seems to be
transcribed as pre-mRNA22. Our primary data also include strong
signals from many isolated probes (Fig. 1). Our results support the
view that most multiple-exon genes expressed in diverse tissues are
already identified, although there are probably thousands of additional
exons that are not currently annotated. Our study therefore reconciles
a discrepancy between previous approaches to gene identification and,
furthermore, extensively revises our knowledge of the exon composi-
tion of the mammalian genome.

METHODS
Array design. To achieve broad coverage of putative exons, we used liberal

detection criteria. The numbers of putative exons and of unique putative exons

detected by each program were as follows: GenScan, 374,540 and 117,849;

HMMGene, 385,759 and 159,523; GrailEXP, 307,911 and 139,906; BlastX,

327,746 and 32,869; and BlastN, 642,401 and 272,152. These yielded a total

of 1,140,421 unique putative exons. Details of exon detection and probe

selection are given in Supplementary Methods online. We selected a single

Tm-balanced oligonucleotide to represent each exon on the basis of a scoring

system that favors unique sequences without secondary structure and a

minimum of simple repeats and homopolymeric runs. Six copies of each of

52 array designs, each containing 21,929 60-mer probes, were manufactured by

Agilent Technologies. Sequences of probes are available from our project

website, together with mappings to build 33 of the mouse genome.

Tissue pools. We combined the mRNA samples from tissues listed in Table 1

and reverse-transcribed them for each of the 52 array designs. Typical cDNA

yields were 25–50% of the amount of mRNA input. Full details of pool

selection, tissue sources and RNA preparation are given in Supplementary

Methods online.

Varying the sensitivity of GenRate and permutation-based estimates of the

exon and CoReg FDERs. We estimated exon and CoReg FDERs as a function

of the parameters used in the GenRate analysis. GenRate is a deterministic

algorithm with three parameters: the probability y that a probe is at the start of

a CoReg; the probability that a probe in a CoReg corresponds to an exon; and

the average number of probes encompassed by a CoReg. The analysis is most

dependent on the first parameter, y, which determines the number of CoRegs

that are detected (i.e., the sensitivity of the system) and the FDER. We report

results as a function of FDER. The analysis is much less sensitive to the other

two parameters, which we set to 0.7 and 20, respectively, using estimates

obtained by mapping known human and mouse genes to our probe set. To

estimate the FDER, we applied GenRate to a version of our data in which the

probes were randomly reordered on a chip-by-chip basis (disrupting their

order on the chromosome) and repeated this process ten times to obtain an

accurate estimate. By varying y, we obtained exon and CoReg FDERs varying

from 0.13% to 32% and from 0.2% to 37%, respectively.

Mapping known human and mouse genes to our probe set. We compared the

chromosomal locations of exons in mouse RefSeq Golden Path genes (build 33)

directly with our probe locations, which were mapped to build 33. To include

cDNA sequences not on the Golden Path, we used BLAT23 to map cDNA

sequences in RefSeq24, Ensembl25, FANTOM2 and Unigene26 to the chromo-

somes of build 33 of the mouse genome. To minimize false discovery of genes

by cross-hybridization3, we allowed all probes with 19 in 20 contiguous

nucleotide matches to a cDNA to be considered a match. With the exception

of Unigene, more than 90% of genes in these five databases were represented by

probes on our arrays. We also mapped all 33,930 (28,374 known and 5,556

‘novel’) of the Ensembl25 human genes in a similar fashion, using E o 10�4

(BLAST) as a cut-off for identity to the array probe.

Comparison with previous results15 on the X chromosome. We mapped all

mouse exons for which we have probes to the human-mouse homologous

regions of the X chromosome, using the two-way human-mouse BlastZ

alignments downloaded from the University of California Santa Cruz in March

2005. All probes that were previously designed for the human X chromosome15
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were lined up with the corresponding matched human coordinates in the

homologous regions. We constructed an evaluation set of 6,699 putative exons

from aligned sequences that include at least one probe from our system and

one probe from the previously reported system15. We found that 3,447 (52%)

of these map to exons in the reference set of mouse RefSeq genes.

We normalized both microarray data sets on a chip by chip basis by applying

an affine transformation to the probe signals on each chip, so that the median

probe signal and the difference between the 75th percentile and 25th percentile

were the same across all chips. To compare the accuracy and recall of GenRate

against those of the previously reported system15, we varied the probe intensity

threshold in their method from the 20th percentile to the 90th percentile,

obtaining multiple analyses with different sensitivities. The sensitivity of

GenRate was varied as described previously.

Comparing GenRate CoRegs with RefSeq genes. A RefSeq gene was con-

sidered to be detected if at least one half or at least five of the exons in the gene

were detected by GenRate. To determine the set of most highly expressed

RefSeq genes, we computed a total expression level for every RefSeq gene. To

limit the effects of probe sensitivity, we determined the total expression of a

RefSeq gene by counting the number of exons with maximum probe signal

(over the 12 tissue pools) in excess of 20. In a previous study8, this threshold

was useful in distinguishing positive signals from negative controls.

URL. Our project website is available at http://www.psi.toronto.edu/genrate/.

Accession codes. GEO, GSE3047.

Note: Supplementary information is available on the Nature Genetics website.
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