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Abstract. Genome-wide microarray designs containing millions to tens
of millions of probes will soon become available for a variety of mammals,
including mouse and human. These “tiling arrays” can potentially lead
to significant advances in science and medicine, e.g., by indicating new
genes and alternative primary and secondary transcripts. While bottom-
up pattern matching techniques (e.g., hierarchical clustering) can be used
to find gene structures in tiling data, we believe the many interacting
hidden variables and complex noise patterns more naturally lead to an
analysis based on generative models. We describe a generative model of
tiling data and show how the iterative sum-product algorithm can be
used to infer hybridization noise, probe sensitivity, new transcripts and
alternative transcripts. We apply our method, called GenRate, to a new
exon tiling data set from mouse chromosome 4 and show that it makes
significantly more predictions than a previously described hierarchical
clustering method at the same false positive rate. GenRate correctly pre-
dicts many known genes, and also predicts new gene structures. As new
problems arise, additional hidden variables can be incorporated into the
model in a principled fashion, so we believe that GenRate will prove to
be a useful tool in the new era of genome-wide tiling microarray analysis.

1 Introduction

One of the most important current problems in molecular biology is the develop-
ment of techniques for building libraries of genes and gene variants for organisms,
and in particular higher mammals such as mice and humans. While an analy-
sis of genomic nucleotide sequence data can be used to build such a library
(c.f. [30]), it is the mRNA molecules that are transcribed from genomic DNA
(“transcripts”) that directly or indirectly constitute the library of functional
elements. In fact, the many complex mechanisms that influence transcription
of genomic DNA into mRNAs produces a set of functional transcripts that is
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much richer than can be currently explained by analyzing genomic DNA alone.
This richness is due to many mechanisms including transcription of non-protein-
coding mRNA molecules that are nonetheless functional (c.f. [2]), tissue-specific
transcriptional activity, alternative transcription of genomic DNA (e.g., alter-
native start/stop transcription sites), and alternative post-transcriptional splic-
ing of mRNA molecules (c.f. [3, 5, 4, 9]). Instead of attempting to understand
these variants by studying genomic DNA alone, microarrays can be used to di-
rectly study the rich library of functional transcriptional variants. Previously, we
used microarrays to study subsets of variants, including non-protein-coding mR-
NAs [6] and alternative-splicing variants [8]. Here, we describe a technique called
“GenRate”, which applies the max-product algorithm in a graphical model to
perform a genome-wide analysis of high-resolution (many probes “per gene”)
microarray data.

In 2001, Shoemaker et al. demonstrated for the first time how DNA mi-
croarrays can be used to validate and refine predicted transcripts in portions of
human chromosome 22q, using 8,183 exon probes [21]. By “tiling” the genome
with probes, patterns of expression can be used to discover expressed elements.
In the past 3 years, the use of microarrays for the discovery of expressed elements
in genomes has increased with improvements in density, flexibility, and accessi-
bility of the technology. Two complementary tiling strategies have emerged. In
the first, the genome is tiled using candidate elements (e.g., exons, ORFs, genes,
RNAs), each of which is identified computationally and is represented one or a
few times on the array [19,21,11,14]. In the second, the entire genome sequence
is comprehensively tiled, e.g., overlapping oligonucleotides encompassing both
strands are printed on arrays, such that all possible expressed sequences are rep-
resented [21,13,20,23,14,15,31]. Genome-wide tiling data using both approaches
is currently becoming available [32,1].

The above tiling approaches, as well as independent analysis by other meth-
ods [17,11] have indicated that a substantially higher proportion of genomes are
expressed than are currently annotated. The most recent genome-wide mam-
malian survey by Bertone et al. is based on expression in a single tissue (liver)
and claims to have found 10,595 novel transcribed sequences over and above
genes detected by other methods. However, since microarray data is noisy and
since probe sensitivity and cross-hybridization noise can vary tremendously from
one probe to another (a factor of 40 is not unusual), it is quite difficult to control
the false detection rate using only one tissue. Most protein-coding transcripts
are composed of multiple exons and most mammalian genes vary in expression
between tissues, so tissue-dependent co-regulation of probes that are nearby in
the genome provides evidence of a transcriptional unit [21]. We will refer to such
a co-regulated transcriptional unit as a “CoReg”.

Microarrays do not inherently provide information regarding the length of
the RNA or DNA molecules detected, nor do they inherently reveal whether
features designed to detect adjacent features on the chromosome are in fact de-
tecting the same transcript. mRNAs, which account for the largest proportion
of transcribed sequence in a genome, present a particular challenge. mRNAs
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are composed only of spliced exons, often separated in the genome (and in the
primary transcript) by thousands to tens of thousands of bases of intronic se-
quence. Each gene may have a variety of transcript variants, e.g., due to alter-
native splicing [3, 4] and exons that are conserved across species (e.g. human
and mouse) often undergo species-specific splicing [9]. Identifying the exons that
comprise individual transcripts from genome- or exon-tiling data is not a trivial
task, since falsely-predicted exons, overlapping features, transcript variants, and
poor-quality measurements can confound assumptions based on simple correla-
tion of magnitude or co-variation of expression.

Heuristics that group nearby probes using intensity of expression or co-
regulation across experimental conditions can be used to approach this prob-
lem [21, 13, 23, 14, 32]. In [21], correlations between the expression patterns of
nearby probes are used to merge probes into CoRegs. A merge step takes place
if the correlation exceeds 0.5, but not if the number of non-merged probes be-
tween the two candidate probes is greater than 5. In [13], the density of the
activity map of RNA transcription is used to verify putative exons. In [32], a
single tissue is studied and two probes are merged if their intensities are in the
top 90th percentile and if they are within 250nt of each other. In [14], principal
components analysis (PCA) is first applied to probes within a window. Then,
the distribution of PCA-based Mahalanobis distances of probes are compared
with the distribution of distances for known intron probes, and each probe is
merged into a CoReg if the distance of the probe to a selection of the PCA
subspaces is low.

While the above techniques have been quite helpful in analyzing microarray
data, an important disadvantage of the techniques is that they do not directly
model various sources of noise and the noisy relationships between variables.
For example, a highly-sensitive probe will indicate the presence of transcript,
even if the true abundance is negligible. A poorly-designed probe will cross-
hybridize to many other transcripts, again misleadingly indicating the presence
of the transcript for which the probe was designed. By not optimizing a global
scoring function derived from a model of the various processes, these techniques
tend to make greedy local decisions that are not globally optimal. For exam-
ple, while the assignment of a probe to a CoReg may be locally optimal, this
decision removes the probe from consideration in other CoRegs, so the decision
may not be globally optimal. Further, because these techniques do not clearly
identify the probabilistic relationships between relevant hidden variables (e.g.,
gene start/stop sites), it is not straightforward to modify them to account for
new hidden variables or new data types. Also, because the separation between
modeling assumptions and the optimization technique is not clear, it is difficult
to improve performance in a principled manner.

Inspired by recent successes in using graphical probability models (e.g., Baye-
sian networks) to analyze microarray data (c.f. [22, 24]), we have developed a
generative probability model which jointly accounts for the stochastic nature of
the arrangement of exons in genomic DNA, the stochastic nature of transcript
expression, and the properties of probe sensitivity and noise in microarray data.
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Inference in this model balances different sources of probabilistic evidence and
makes a globally-optimal set of decisions for CoRegs, after combining proba-
bilistic evidence. In contrast to our recent work [25] where exact inference is
tractable, the model described in this paper accounts for more complex gene
structures, such as alternative splicing isoforms, so exact inference is computa-
tionally burdensome. We describe how iterative application of the sum-product
algorithm (a.k.a. “loopy belief propagation”) can be used for efficient probabilis-
tic inference. We compare the performance of our technique with a bottom-up
threshold-based hierarchical clustering method [21], and we find that at low false
positive rates, GenRate finds at least five times more exons. We also present
new results showing that out of many novel mouse gene structures predicted by
GenRate, the 9 highest-scoring structures that we tested are all confirmed by
RT-PCR sequencing experiments.

2 Microarray Data

The microarray data set, a portion of which is shown in Fig. 1, is a subset of
a full-genome data set to be described and released elsewhere [1]. Briefly, exons
were predicted from repeat-masked mouse draft genome sequence (Build 28) us-
ing five different exon-prediction programs. Once Build 33 became available, we
mapped the putative exons to the new genome. (While this data is based on
putative exons, GenRate can be applied to any sequence-based expression data
set, including genome tiling data.) A total of 48,966 non-overlapping putative
exons were contained on chromosome 4 in Build 33. One 60-mer oligonucleotide
probe for each exon was selected using conventional procedures, such that its
binding free energy for the corresponding putative exon was as low as possible
compared to its binding free energy with sequence elsewhere in the genome, tak-
ing into account other constraints on probe design. (For simplicity, we assume
each probe has a unique position in the genome.) Arrays designs were submitted

Fig. 1. A small fraction of our data set for chromosome 4, consisting of an expression
measurement for each of 12 mouse tissue pools and 48,966 60-mer probes for repeat-
masked putative exons arranged according to their order in Build 33 of the genome.
Some “CoRegs” (co-regulated transcriptional units) were labeled by hand and are
shown with green bars
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to Agilent Technologies (Palo Alto, California) for array production. Twelve di-
verse samples were hybridized to the arrays, each consisting of a pool of cDNA
from poly-A selected mRNA from mouse tissues (37 tissues total were repre-
sented). The pools were designed to maximize the diversity of genes expressed
between the pools, without diluting them beyond detection limits [7]. Scanned
microarray images were quantitated with GenePix (Axon Instruments), complex
noise structures (spatial trends, blobs, smudges) were removed from the images
using our spatial detrending algorithm [10], and each set of 12 pool-specific im-
ages was calibrated using the VSN algorithm [26] (using a set of one hundred
“housekeeping” genes represented on every slide). For each of the 48,966 probes,
the 12 values were then normalized to have intensities ranging from 0 to 1.

3 Generative Model

Our model accounts for the expression data by identifying a large number of
CoRegs, each of which spans a certain number of probes. Each probe within
a CoReg may correspond to an exon that is part of the CoReg or an intron
that is not part of the CoReg. The probes for the tiling data are indexed by i
and the probes are ordered according to their positions in the genome. Denote
the expression vector for probe i by xi, which contains the levels of expression
of probe i across M experimental conditions. In our data, there are M = 12
tissue pools. To account for alternative primary and secondary transcripts, we
allow CoRegs to overlap. So, we assume that when the genome sequence data
is scanned in order, if a probe corresponds to an exon, the exon belongs to one
of a small number of CoRegs that are currently active. Exons that take part in
multiple transcripts are identified in a post-processing stage. This model enables
multiple concurrent CoRegs to account for alternative splicing isoforms.

For concreteness, in this paper we assume that at most two CoRegs may be
concurrently active, but the extension to a larger number is straightforward. So,
each CoReg can be placed into one of two categories (labeled q = 1 and q = 2)
and for probe i, the discrete variable ei indicates whether the probe corresponds
to an intron (ei = 0) or an exon from the CoReg from category 1 (ei = 1) or
2 (ei = 2). At position i, �q

i is the remaining length (in probes) of the CoReg
in category q, including the current probe. The maximum length is �q

i = L and
�q
i = 0 indicates that probe i is in-between CoRegs in category q.

To model the relationships between the variables {�q
i } and {ei}, we computed

statistics using confirmed exons derived from four cDNA and EST databases:
Refseq, Fantom II, Unigene, and Ensembl. The database sequences were mapped
to Build 33 of the mouse chromosome using BLAT [18] and only unique mappings
with greater than 95% coverage and greater than 90% identity were retained.
Probes whose chromosomal location fell within the boundaries of a mapped exon
were taken to be confirmed. We model the lengths of CoRegs using a geometric
distribution, with parameter λ = 0.05, which was estimated using cDNA genes.
Importantly, there is a significant computational advantage in using the memory-
less geometric distribution. Using cDNA genes to select the length prior will
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introduce a bias during inference. However, we found in our experiments that
the effect of this bias is small. In particular, the results are robust to up to one
order of magnitude in variation of λ.

The “control knob” that we use to vary the number of CoRegs that GenRate
finds is κ, the a priori probability of starting a CoReg at an arbitrarily chosen
position. Combining the above distributions, and recalling that �q

i = 0 indicates
position i is in-between CoRegs in category q, we have

P (�q
i |�q

i−1 ∈ {0, 1}) =

{
1 − κ if �q

i = 0
κ(0.05e−0.05�q

i ) if �1i > 0,

P (�q
i |�q

i−1 ∈ {2, . . . , L}) = [�q
i = �q

i−1 − 1],

where square brackets indicate Iverson’s notation, i.e., [True] = 1 and [False] =
0. Both 0 and 1 are included in the condition “�i−1 ∈ {0, 1}”, because a new
CoReg may start directly after the previous CoReg has finished. The term
κ(0.05e−0.05�q

i ) is the probability of starting a CoReg with length �1i .
From genes in the cDNA databases, we found that within individual genes,

probes are introns with probability ε = 0.3. Depending on whether one or two
CoRegs are active, we use a multinomial approximation to the probability that
a probe is an exon:

P (ei = 0|�1i , �2i ) = ε[�
1
i >0]+[�2i >0],

P (ei = 1|�1i , �2i ) = [�1i > 0](1 − ε)(
1 + ε

2
)[�

2
i >0],

P (ei = 2|�1i , �2i ) = [�2i > 0](1 − ε)(
1 + ε

2
)[�

1
i >0],

where again square brackets indicate Iverson’s notation. Note that under this
model, P (ei = 0|�1i > 0, �2i > 0) = ε2, P (ei = 1|�1i > 0, �2i = 0) = 1 − ε and
P (ei = 1|�1i > 0, �2i > 0) = (1 − ε2)/2.

The similarity between the expression profiles belonging to the same CoReg
is accounted for by a prototype expression vector. Each CoReg has a unique,
hidden index variable and the prototype expression vector for CoReg j is µj . We
denote the index of the CoReg at probe i in category q by cq

i .
Different probes may have different sensitivities (for a variety of reasons,

including free energy of binding), so we assume that each expression profile be-
longing to a CoReg is similar to a scaled version of the prototype. Since probe
sensitivity is not tissue-specific, we use the same scaling factor for all M tissues.
Also, different probes will be offset by different amounts (e.g., due to differ-
ent average amounts of cross-hybridization), so we include a tissue-independent
additive variable for each probe. The expression profile xi for an exon (where
ei > 0) is equal to the corresponding prototype µc

ei
i

, plus isotropic Gaussian
noise, we have

P (xi|ei = q, c1
i , c

2
i , ai, {µj}) =

M∏
m=1

1√
2πa2

i3

e
−(xim−[ai1µc

q
i

,m+ai2])2/2a2
i3 ,
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where ai1, ai2 and ai3 are the scale, offset and isotropic noise variance for probe
i, collectively referred to as ai. In the a priori distribution P (ai) over these
variables, the scale is assumed to be uniformly distributed in [1/30, 30], which
corresponds to a liberal assumption about the range of sensitivities of the probes.
The offsets are assumed to be uniform in [−0.5, 0.5] and the variance is assumed
to be uniform in [0, 1]. While these assumptions are simplistic, we find they are
sufficient for obtaining high-precision predictions, as described below.

We assume that the expression profiles for false exons are independent of
the identify of the CoReg. While this assumption is also simplistic and should
be further researched, it simplifies the model and leads to good results, so we
make it for now. Thus, the false exon profiles are modeled using a background
expression profile distribution:

P (xi|ei = 0, c1
i , c

2
i , ai, {µj}) = P0(xi)

Since the background distribution doesn’t depend on c1
i , c2

i , ai or {µ}, we also
write it as P (xi|ei = 0). We obtained this background model by training a
mixture of 100 Gaussians on the entire, unordered set of expression profiles using
a robust split-and-merge training procedure, and then including a component
that is uniform over the range of expression profiles.

The Bayesian network in Fig. 2 shows the dependencies between the ran-
dom variables in this generative model. Often, when drawing Bayesian networks,
the parameters (prototypes) are not shown. We include the prototypes in the
Bayesian network to highlight that they induce long-range dependencies in the
model. For example, if a learning algorithm uses too many prototypes to model
CoRegs (gene structures) in the first part of the chromosome, not enough will
be left to model the remainder of the chromosome. So, during learning, proto-
types must somehow be distributed in a fair fashion across the chromosome. We
address this problem in the next section.

Fig. 2. A Bayesian network showing the variables and parameters in GenRate
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Combining the structure of the Bayesian network with the conditional dis-
tributions described above, we can write the joint distribution as follows:

P ({xi}, {ai}, {ei}, {c1
i }, {c2

i }, {�1i }, {�2i }, {µj}) =( N∏
i=1

P (xi|ei, c
1
i , c

2
i , ai, {µj})P (ai)P (ei|�1i , �2i )

( 2∏
q=1

P (cq
i |cq

i−1, �
q
i−1)P (�q

i |�q
i−1)

)) G∏
j=1

P (µj),

where the appropriate initial conditions are obtained by setting P (cq
1|cq

0, �
q
0) =

[cq
1 = 1] and P (�q

1|�q
0) ∝ (1−λ)�q

1λ, �1q = 1, . . . , L. The constant of proportionality
normalizes the distribution (if � were not bounded from above by L, the distribu-
tion not require normalization). Whenever a gene terminates, cq

i is incremented
in anticipation of modeling the next gene, so P (cq

i = n|cq
i−1 = n, �q

i−1) = 1 if
�q
i−1 > 1 and P (cq

i = n + 1|cq
i−1 = n, �q

i−1) = 1 if �q
i−1 = 1. We assume the

prototypes are distributed according to the background model: P (µj) = P0(µj).

4 Inference and Learning

Exact inference of the variables and parameters in the above model is compu-
tationally intractable. Given the model parameters, the model has a chain-type
structure, so a standard approach is to use the EM algorithm [27]. EM iterates
between performing exact inference for the variables in the chain while holding
the parameters constant, and then updating the parameters based on sufficient
statistics computed during inference in the chain. However, the EM algorithm
fails spectacularly on this problem, because it gets stuck in local minima where
prototypes are used to model weakly-evidenced gene patterns in one part of the
chromosome, at the cost of not modeling gene patterns elsewhere in the chro-
mosome. In fact, the EM algorithm in long hidden Markov models is known to
be extremely sensitive to initial conditions and tends to find poor local minima
caused by suboptimal parsings of the long data sequence [33].

To circumvent the problem of poor local minima, we devised a computa-
tionally efficient scheme for finding good solutions in a discrete subspace of the
parameter space, which can then be finely tuned using the EM algorithm. In our
scheme, the prototypes are represented using examples from the data set (in a
manner akin to using data points as cluster centers in “k-centers clustering”).
In the original model, the prototype for xi is derived from nearby expression
patterns, corresponding to nearby exons in the genomic DNA. Thus, if xi is part
of a CoReg, there is likely another x nearby that is a good representative of the
profile for the CoReg. In the new representation, we replace each pair of variables
�q
i and cq

i with a variable rq
i that encodes the relative location of the prototype

for xi. rq
i gives the distance, in indices, from xi to the prototype xj for the CoReg

that xi belongs to, i.e. rq
i = j−i. For example, rq

i = −1 indicates that the profile
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immediately preceding xi is the prototype for the gene to which xi belongs. We
limit the range of rq

i to −W, . . . , W , where W is a “window length”. Within
a CoReg, rq

i decrements, indicating that the relative position of the prototype
always decreases. We set aside a particular value of rq

i , r0 = W + 1, to account
for the situation where i is in-between CoRegs.

Note that in this representation, the start of a CoReg corresponds to the
condition rq

i = r0 and rq
i+1 �= r0, while the end of a CoReg corresponds to the

condition rq
i �= r0 and rq

i+1 = r0. If a new CoReg starts directly after the pre-
vious CoReg, the boundary corresponds to the condition rq

i+1 > rq
i . Since the

r-variables are sufficient for describing CoReg boundaries, in fact, the � vari-
ables need not be represented in the model. So, the new representation contains
variables {rq

i }, {ei}, {ai}, and {xi}. If xi is an exon in category q (ei = q), the
conditional distribution of xi is

M∏
m=1

1√
2πa2

i3

e
−(xim−[ai1xi+r

q
i

,m+ai2])2/2a2
i3 ,

except if xi is the prototype for the gene (rq
i = 0), in which case the distribution

of xi is P0(xi). This model cannot be expressed as a Bayesian network, because
constructing a Bayesian network from the above form of conditional distribution
would create directed cycles. However, it can be expressed as a factor graph [28]
or a directed factor graph [25].

The above model is a product of a Markov chain on {r1
i } and another Markov

chain on {r2
i }, coupled together by the switch ei, which determines which chain

is used to model the current expression vector, xi. By combining the state spaces
of the two Markov chains, exact inference can be performed using the forward-
backward algorithm or the Viterbi algorithm. However, the combined state space
has 4W 2 states, where 2W is the maximum width of a CoReg, in probes. To en-
able our algorithm to find long CoRegs, we set W = 100, so the number of states
in the combined chain would be 40, 000, making exact application of the Viterbi
algorithm too slow. Instead, we apply the iterative sum-product algorithm to
perform inference in the pair of coupled chains [28]. In each iteration, the algo-
rithm performs a forward-backward pass in one chain, propagates probabilistic
evidence across to the other chain, and then performs a forward-backward pass
in the other chain.

We implemented the above inference algorithm in MATLAB, and for a given
value of κ, our implementation takes approximately 10 minutes on a 2.4GHz
PC to process the 48,966 probes and 12 tissue pools in chromosome 4 (with
W = 100). The only free parameter in the model is κ, which sets the statistical
significance of the genes found by GenRate.

5 Discussion of Computational Results

Fig. 3 shows a snapshot of the GenRate view screen that contains interesting
examples of CoRegs found by GenRate. After we set the sensitivity control, κ,
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Fig. 3. The GenRate program (implemented in MATLAB) shows the genomic ex-
pression data and predicted CoRegs for a given false positive rate. The new genes,
known genes and extensions of known genes that are found by GenRate are identified
by shaded blocks, each of which indicates that the corresponding exon is included in
the gene. Genes in cDNA databases (Ensembl, Fantom II, RefSeq, Unigene) are also
shown. Each box at the bottom of the screen corresponds to a predicted gene structure
and contains the normalized profiles for exons determined to be part of the gene. The
corresponding raw profiles are connected to the box by lines. The score of each gene is
printed below the corresponding box

to achieve a false positive rate of 1%, as described below, GenRate found 9,332
exons comprising 712 CoRegs. To determine how many of these predictions are
new, we extracted confirmed genes derived from four cDNA and EST databases:
Refseq, Fantom II, Unigene, and Ensembl. The database sequences were mapped
to Build 33 of the mouse chromosome using BLAT and only unique mappings
with greater than 95% coverage and greater than 90% identity were retained.
Probes whose chromosomal location fell within the boundaries of a mapped exon
were taken to be confirmed.

An important motivation for approaching this problem using a probability
model is that the model should be capable of balancing probabilistic evidence
provided by the expression data and the genomic exon arrangements. For ex-
ample, there are several expression profiles that occur frequently in the data
(in particular, profiles where activity in a single tissue pool dominates). If two
of these profiles are found adjacent to each other in the data, should they be
labeled as a gene? Obviously not, since this event occurs with high probability,
even if the putative exons are arranged in random order.

To test the statistical significance of the results obtained by GenRate, we
constructed a new version of the chromosome 4 data set, where the order of the
columns (probes) is randomly permuted. For each value of κ in a range of values,
we applied GenRate to the original data and the permuted data, and measured
the number of positives and the number of false positives.
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(a) (b)

Fig. 4. (a) The number of exons in predicted CoRegs versus the exon false positive
rate. The 3 curves correspond to the total number of predicted exons, the number of
exons that are not in cDNA databases, and the number of known exons. The dash-
dot line shows the number of exons in known genes from chromosome 4 (according
to cDNA databases). (b) The number of predicted CoRegs versus the number of false
positive predictions. The 3 curves correspond to the total number of predicted CoRegs,
the number genes that are completely new (all exons within each structure are new),
and the number of genes that contain at least 50% new exons

Fig. 4a shows the number of exons in CoRegs predicted by GenRate versus
the false positive rate. Fig. 4b shows the number of predicted CoRegs versus
the number of false positives. These curves demonstrate that GenRate is able to
find CoRegs and associated exons with high precision. At an exon false positive
rate of 1%, GenRate identifies 9,118 exons, 2,416 of which do not appear in
known genes in cDNA databases, and GenRate identifies 65% of the exons in
known genes in cDNA databases. This last number is a reasonable estimate of
the proportion of genes that are expected to be expressed in the tissue pools
represented in the data set. In Fig. 4b, when κ is set so GenRate finds 20 false
positive CoRegs, GenRate identifies approximately 1,280 CoRegs, 209 of which
contain at least 50% new exons, and 107 of which have no overlap with genes in
cDNA databases.

Interestingly, the genes found by GenRate tend to be longer than genes in
cDNA databases, as shown in Fig. 5a. While some of this effect can be accounted
for by the fact that GenRate tends to find longer transcripts because they have
higher statistical significance than short transcripts (e.g., those containing 1 or 2
exons), there are two other explanations that should be considered. First, neigh-
boring genes that are co-regulated may be identified by GenRate as belonging
to a single transcript. We found that 23% of pairs of neighboring genes in the
RefSeq cDNA database that were both detected by GenRate were identified as
a single CoReg by GenRate. However, it is possible that in many of these cases
the neighboring pair of “genes” in the cDNA database are in fact a single gene
and that GenRate is correctly merging the predictions together. This possibility
is consistent with the latest revision of the human genome, which shows that
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the number of genes is significantly lower than previously predicted [30], so that
average gene length is longer than previously thought. In fact, as described be-
low, we have shown using overlapping RT-PCR experiments that the longest,
highest-scoring CoRegs identified by GenRate that consist of multiple cDNA
“genes” exist as single, long transcripts.

5.1 Comparison to Hierarchical Clustering

A previously-described technique for assembling CoRegs from microarray tiling
data consists of recursively merging pairs of probes into clusters, based on the
correlation between the corresponding expression profiles and the distance be-
tween the probes in the genome [21]. In particular, if the correlation exceeds
a threshold θ1 and the genomic distance is less than another threshold θ2, the
probes are merged. In Fig. 5b, we compare the sensitivities of GenRate and this

(a)

(b)

Fig. 5. (a) Cumulative distributions of gene lengths (in exons) for genes in cDNA
databases and genes found by GenRate at an exon false positive rate of 1%. (b) A
comparison between GenRate and correlation-based hierarchical clustering
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(a) (b)

Fig. 6. (a) Additional exons predicted when overlapping CoRegs are taken into ac-
count. (b) Alternative splicing isoforms predicted by GenRate. The indicated structure
corresponds to a known splicing event

recursive clustering procedure for a large number of different values of θ1 and
θ2. For low false positive rates, GenRate detects at least five times more exons.

5.2 Detection of Splicing Isoforms

After inference, GenRate can list high-scoring examples of overlapping CoRegs,
which may correspond to alternative primary and secondary transcripts. Fig. 6a
shows the number of additional exons predicted in overlapping CoRegs versus
the number of false positives. Fig. 6b shows six randomly-selected cases of over-
lapping CoRegs. We are still in the process of investigating the transcripts cor-
responding to these cases using RT-PCR. However, one of the predictions from
GenRate (the last one shown in Fig. 6b) corresponds to a known alternative
splicing isoform.

5.3 Non-monotonic Reasoning

Because GenRate combines different sources of probabilistic information in a
global scoring (probability) function, for different settings of the sensitivity
κ, GenRate produces different interpretations of the genome-wide structure of
CoRegs. For example, two putative exons that are part of the same CoReg at
one setting of κ may be re-assigned to different CoRegs at a different setting
of κ. This type of inference, whereby decisions are changed as more evidence is
considered, is called non-monotonic. (In contrast, simpler techniques, such as hi-
erarchical clustering, produce monotonic inferences.) An important consequence
of this is that for a given sensitivity, a low false positive rate can be achieved
by re-running GenRate. Fig. 7 shows that by re-running GenRate, a much lower
false positive rate is achieved at the same true positive rate. The red (dashed)
curve was obtained by running GenRate with a high value of κ, scoring the
CoRegs according to their local log-probabilities, and then applying a threshold
to the scores to produce a predicted set of CoRegs. This was repeated with the
randomly permuted data to obtain the plot of detected CoRegs versus false pos-
itives. The blue (solid) curve was produced by running GenRate with different
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Fig. 7. When GenRate is re-run with a different sensitivity, κ, it may re-assign putative
exons to other CoRegs. Compared to running GenRate once and using CoReg scores to
rank CoRegs (red, dashed curve), running GenRate multiple times (blue, solid curve)
leads to a significantly lower false positive rate at a given sensitivity

values of κ and retaining all predicted CoRegs (not applying a score threshold).
By re-running GenRate, a much lower false positive rate is achieved for the same
detection rate.

6 RT-PCR Experiments

Using RT-PCR, we have verified nine of the novel, high-scoring transcripts pre-
dicted by GenRate. In three cases, we selected predicted CoRegs that had high

Fig. 8. RT-PCR results for three new transcripts identified by GenRate. The horizontal
axis corresponds to the weight of the RT-PCR product and the darkness of each band
corresponds to the amount of product with that weight
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scores and no overlap with genes in the four cDNA databases. Fig. 8 shows
the RT-PCR results for these predictions. The two PCR primers for each pre-
dicted transcript are from different exons separated by thousands of bases in
the genome. For each predicted transcript, we selected a tissue pool with high
microarray expression. We included the ubiquitously-expressed gene GAPDH to
ensure proper RT-PCR amplification. The RT-PCR results confirm the predicted
transcripts. Results on the other novel transcripts will be reported in another
article [1].

7 Summary

GenRate is the first generative model that combines a model of genomic arrange-
ment of putative exons with a model of expression patterns, for the purpose of
discovering CoRegs in genome-wide tiling data. By balancing different sources
of uncertainty, GenRate is able to achieve a significantly lower false positive rate
than correlation-based hierarchical clustering methods. Applied to our microar-
ray data, GenRate identifies many novel CoRegs with a low false-positive rate.
We confirmed three of the predicted transcripts using RT-PCR experiments, and
were able to recover known alternative splicing events and predict some new ones,
albeit with high false positive rate. We have recently completed a genome-wide
analysis of novel transcripts and this work has led us to a surprising conclusion,
reported in [1], which appears to contradict recent results obtained by other
researchers using microarrays to detect novel transcripts.

Because GenRate is based on a principled probability model, additional hid-
den variables can be incorporated in a straight-forward fashion. We believe Gen-
Rate will be a useful tool for analyzing other types of genome-wide tiling data,
such as whole-genome tiling arrays.
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