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Alternative splicing, the process by which a single gene maycode for similar but di�erent

proteins, is an important process in biology, linked to development, cellular di�erentia-

tion, genetic diseases, and more. Genome-wide analysis of alternative splicing patterns

and regulation has been recently made possible due to new high throughput techniques

for monitoring gene expression and genomic sequencing. This thesis introduces two algo-

rithms for alternative splicing analysis based on large microarray and genomic sequence

data. The algorithms, based on generative probabilistic models that capture structure

and patterns in the data, are used to study global propertiesof alternative splicing.

In the �rst part of the thesis, a microarray platform for monitoring alternative splicing

is introduced. A spatial noise removal algorithm that removes artifacts and improves data

�delity is presented. The GenASAP algorithm (generative model for alternative splicing

array platform) models the non-linear process in which targeted molecules bind to a

microarray's probes and is used to predict patterns of alternative splicing. Two versions

of GenASAP have been developed. The �rst uses variational approximation to infer the

relative amounts of the targeted molecules, while the second incorporates a more accurate

noise and generative model and utilizes Markov chain Monte Carlo (MCMC) sampling.

GenASAP, the �rst method to provide quantitative predictions of alternative splicing

patterns on large scale data sets, is shown to generate useful and precise predictions based
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on independent RT-PCR validation (a slow but more accurate approach to measuring

cellular expression patterns).

In the second part of the thesis, the results obtained by GenASAP are analysed to

reveal jointly regulated genes. The sequences of the genes are examined for potential

regulatory factors binding sites using a new motif �nding algorithm designed for this

purpose. The motif �nding algorithm, called GenBITES (generative model for binding

sites) uses a fully Bayesian generative model for sequences, and the MCMC approach

used for inference in the model includes moves that can e�ciently create or delete motifs,

and extend or contract the width of existing motifs.

GenBITES has been applied to several synthetic and real datasets, and is shown

to be highly competitive at a task for which many algorithms already exist. Although

developed to analyze alternative splicing data, GenBITES outperforms most reported

results on a benchmark data set based on transcription data.
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Chapter 1

Introduction

The last decade has seen the emergence of large biological datasets, providing new oppor-

tunities and challenges to researchers in the �eld, and requiring new analysis tools to be

developed. New technologies now allow biologists to sequence entire genomes consisting

of billions of nucleotides, simultaneously measure the expression of thousands of genes,

probe the properties of protein interactions, analyze the protein content of samples, and

more [27, 37, 69, 105, 121]. The wealth of data generated by these methods, however, can

be overwhelming, as manual analysis traditionally employed to biologists is impractical.

Many analysis tools using concepts from statistics, dynamic programming, and machine

learning have been proposed and successfully utilized in studies involving large biological

datasets.

Machine learning o�ers tools and approaches to data analysis that have been partic-

ularly e�ective when analyzing biological data. Both supervised and unsupervised learn-

ing methods have been applied successfully to gene expression and genomic sequence

datasets. In turn, computational biology has motivated research in machine learning

[13, 40, 119].

The di�culties facing computational biologists stem from unknown noise character-

istics, non-linear and non-Gaussian noise properties of the data, the large size of the
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Chapter 1. Introduction 2

data sets (some data sets contain hundreds of gigabytes), and the lack of ground truth

[95, 111]. In computer vision and speech processing, two traditional applications of ma-

chine learning, the challenge is to develop algorithms to perform tasks that humans do

naturally: recognize and track objects and scenes, determine spatial orientation in 3D

environments, interpret natural language,etc. For example, it is straightforward, in prin-

ciple, to determine if a speech recognition algorithm is performing well. However, when

analyzing microarray data for co-regulation patterns, there is often no obvious approach

to validation. Verifying predictions using traditional wet-lab experiments is often tedious

and time consuming, and is therefore carried out only on a small scale.

This thesis focuses on the application of probabilistic generative models to large scale

analysis of alternative splicing. Generative models attempt to �nd patterns by describing

the hidden causes underlying the observed data [62, 70]. These hidden causes may have

real-world correspondences, such as a chair giving rise to the pixels in the image, or the

abundances of transcripts binding to probes on the microarray, or they may be abstract

concepts, such as grammatical structures in a speech recording, or commonly occurring

motifs in a DNA sequence. Generative models are well suited to biological data sets,

as they can be used with arbitrary noise models. Additionally, they alleviate problems

arising from lack of ground truth by modeling all the data, including unlabeled data and

hidden variables.

Alternative splicing (Section 2.4) is a phenomenon in whicha single gene may give rise

to multiple mRNA transcripts, enzymes and proteins. It is animportant phenomenon in

molecular biology, occuring in over 85% of human genes [84].For this thesis, two types

of alternative splicing data were available for analysis:

� Microarray Data. This data contains measurements of regions within the poten-

tially expressed transcripts. Given these measurements, the goal is to quantitatively

infer the relative abundances of alternative transcripts,which would lead to con-

clusions about regulation of alternative splicing and reveal the role of alternative
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splicing in gene regulation, species di�erentiation, evolution, and more.

� Genomic sequence Data. Using the inferences from the microarray data, analysis

of the sequences involved in alternative splicing regulation would reveal potential

binding sites for tissue speci�c regulatory factors.

Each dataset presents its own unique challenges. The microarray data contains signal

dependent noise, cross-hybridization (transcripts binding to probes not designed to tar-

get them), spatially dependent noise patterns, and probe saturation distortion [30, 53].

The DNA sequence data contains a mixture of protein-coding and non-coding regions,

and sparse features buried in very long intronic sequences (hundreds of thousands nu-

cleotides). Predicting binding sites of regulatory factors successfully requires accounting

for di�ering noise models, and properties of binding sites in di�erent regions.

1.1 A Taste of Things to Come

Quantitative estimates of relative abundance of transcripts require both a new microaray

design and an appropriate algorithm. At its conception, GenASAP (Section 3.3) was the

�rst algorithm to successfully make meaningful quantitative predictions about alternative

splicing properties based on microarray data. Previous attempts had been concerned

with qualitative predictions (i.e. which transcripts are detected, regardless of quantity).

As is shown in Section 3.4.3, GenASAP and its variants remainthe state of the art in

predicting alternative splicing levels in biological samples, and have led to important

discoveries about the role and e�ect of alternative splicing in the cell.

In contrast to the problem of large scale quantitative analysis of alternative splicing

patterns, the other problem studied here, motif �nding, is along standing problem for

which many algorithms have been proposed. Unfortunately, alternative splicing sequence

data does not conform to the assumptions underlying most motif �nding algorithms.

For example, alternative splicing seems to be regulated by many enzymes and proteins,
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working both cooperatively and antagonistically, and manypotential binding sites are

expected to be present in a single, short sequence segment. Additionally, these binding

sites tend to be much shorter than transcription binding sites, and can be found in both

coding and non-coding regions. The algorithm presented in this thesis, GenBITES, was

designed to deal with the particulars of alternative splicing data, but has shown remark-

able success on transcription data as well. GenBITES has been compared to some of the

most popular algorithms on a transcription benchmark dataset and has outperformed

all previously examined algorithms in some or all evaluation criteria. As no alterna-

tive splicing benchmark exists, GenBITES was applied to a novel alternative splicing

genomic sequence data based on GenASAP predictions, �ndingseveral known motifs,

and accurately predicting important regions in a detailed example used for validation.

This thesis is organized as follows: In Chapter 2, the essential background required

for understanding the thesis is covered. This chapter contains two parts that review

the necessary computational and biological background. First, probabilistic generative

models and the algorithms used to infer and learn using thesemodels are reviewed.

The second part of the chapter discusses the necessary molecular biology, including the

process of alternative splicing and experiments used to generate the data and validate

predictions and results.

Chapter 3 introduces the microarray platform used for global analysis of alternative

splicing and the associated algorithms. In its original incarnation as a variational method,

GenASAP was the �rst successful attempt to quantitatively predict alternative splicing

levels based on microarray data. In Chapter 4, GenBITES, a novel algorithm for motif

detection, is introduced. GenBITES is applied to genomic sequence data to �nd potential

binding sites for splicing factors. Finally, Chapter 5 provides discussion and outlines a

few possible future directions. Figure 1.1 outlines possible approaches to reading the

thesis based on the variety of readers' backgrounds and interests.
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Chapter 1:
Introduction

Chapter 3:
Microarray Analysis and Inference of Transcripts Levels

Chapter 4:
Motif Detection Using Positive and Negative  Examples: 
A Bayesian Method with Efficient MCMC Exploration

Chapter 5:
Conclusions

Chapter 2:
Background

2.1 – 2.4: Machine Learning in Bayesian Networks

2.5 – 2.7: Biological Background

Figure 1.1: How to read the thesis . Depending on the reader's background and inter-

est, there are di�erent sections one may wish to focus on. A bioinformatician interested

in how GenBITES detect novel motifs in genomic sequence data, should review the ma-

chine learning background, but can skip ahead to the algorithm in Chapter 4 (dotted line

on left). A machine learning researcher who may want to see how GenASAP handles the

noise properties of microarrays may wish to review the biological background and focus

on GenASAP while skipping GenBITES (dashed line on right). Of course, the thorough

reader interested in applications of graphical models to biological data would take the

direct path, perusing all chapters.



Chapter 2

Background

To e�ectively study computational biology, it is necessaryto understand the biological

mechanisms as well as the computational tools employed. A thorough comprehension of

the biology is vital in developing meaningful and e�ective models. This chapter reviews

generative models and the various probabilistic inferenceand machine learning algorithms

that may be applied to them. In Section 2.4, the focus shifts to the necessary molecular

biology background for understanding the remainder of thisthesis.

2.1 Bayesian Networks and Generative Models

Probabilistic models have proven to be an e�ective tool in machine learning in recent

years, bringing powerful new algorithms to common problemsin vision, speech, compu-

tational biology, and more [5, 18, 40, 100, 116, 125]. A standard approach for probabilistic

models is to represent observed data as the result of one or more underlying latent causes.

This type of model is referred to as agenerative model. For example, a video segment

may be the result of a stationary background image and several foreground image cutouts

moving across it [61]. The observed data (video or image sequence) is represented as ob-

served random variables, and the unobserved underlying causes are represented as latent

random variables. In the example above, the latent random variables may represent the

6
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image cutouts as well as positional and angular transformations.

A useful visual tool for representing generative models is the Bayesian network [90]. A

Bayesian network is a directed acyclic graph that represents the conditional dependencies

in the model, as shown in Figure 2.1a. Each node in the graph represents a variable

(or a class of variables), where shaded nodes are observed variables, and clear nodes are

unobserved variables. A directed edge from nodeA to nodeB represents the distribution

P(B jA). A model represented by a Bayesian network can have its probability distribution

factored as

p(x) =
Y

i

p(x i jx � i ) (2.1)

wherex � i are the parents ofx i , and nodes without parents are marginally independent.

Many generative models can be represented by a particular type of Bayesian network,

where the leaf nodes are the observed variables and root and internal nodes are the

unobserved variables. The unobserved variables representhidden causes, which, were

they known, would describe how the observed data were generated.

The Bayes-Ball algorithm [99] can be used to determine conditional independencies in

a Bayesian network. Two nodes in the network are independentif there is no possible path

by which the Bayes-ball can travel from one node to another using the rules described

in Figure 2.1b-d. Each variable allows to pass through it if and only if the variable is

unobserved and the Bayes-ball passes through it from head totail, from tail to head,

or from head to head, or the variable (or any of its descendants) is observed and the

Bayes-ball passes through it from tail to tail.

2.1.1 Example: Factor Analysis

The example of factor analysis is useful for grounding the discussion of Bayesian net-

works and the relevant algorithms. The factor analysis model is shown as a Bayesian

network in Figure 2.2. The observed vectorz 2 RN is assumed to be a high dimensional
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B

C

A

ED

(a) (b) (c) (d)

Figure 2.1: Bayesian Networks and the Bayes-Ball algorithm. (a) A sample

Bayesian network. Unshaded nodes represent hidden variables, shaded nodes repre-

sent observed variables, and edges represent conditional dependencies. This partic-

ular network represents a distribution that can be factoredas P(A; B; C; D; E ) =

P(A)P(B jA)P(CjA; B )P(D jC)P(EjC) (b) A node with two (or more) ancestors blocks

the ball if it is unobserved, but lets the ball through if it is observed. (c) A node with two

(or more) descendants lets the ball through if unobserved, but blocks it if it is observed.

(d) An unobserved node lets the ball pass from its parents to its children and from its

children to its parents, but an observed node does not. Two variables in the model are

conditionally independent if there is no path by which the Bayes-ball may travel from

one node to the other.
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representation of the low dimensionaly 2 RM , whereN > M , with some added noise:

z = � y + � + �

or in scalar notation zi =
MX

j =1

� ij yj + � i + � i 8i = 1 : : : N;
(2.2)

where � is an added shift, � 2 RN � M is the factor loading matrix, and � is the added

noise.

In this model, � and � are parameters of the model,z are the observed data, and

y are the latent variables. The Bayesian network in Figure 2.2, while useful in provid-

ing a visualization of the interactions of the model's elements, is not su�cient to fully

describe the model. The network shown in Figure 2.2b, makes apparent that the factor

analysis model can be represented asP(z; y) =
MQ

j =1
P(yj )

NQ

i =1
P(zi jy), indicating that the

� i and yi are marginally independent. However, these distributionsremain to be de�ned.

The typical factor analysis model assumes a zero-mean univariate Gaussian prior with

standard deviation of 1 foryj and Gaussian white noise:

P(yj ) = N (yj ; 0; 1) =
1

p
2�

e�
y 2

j
2 8j = 1 : : : M; (2.3)

P(zi jy) = N (x i ; � i y + � i ;  i ) =
1

p
2� i

e� ( x i � � i y � � i ) 2

2 i 8i = 1 : : : N: (2.4)

In the following sections, it will be shown how the posteriordistribution of the hidden

variables may be inferred, and the model's parameters estimated.

2.2 Inference in Bayesian Networks

A Bayesian network provides a framework under which the observed data may be ex-

plained by latent causes in the form of hidden variables. Inference in this context is the

process by which the posterior distribution of the hidden variables, xf hg, given the visi-

ble data, xf vg, and the model's parameters,� , is computed. DeterminingP(xf hgjxf vg; � )

is in general an NP-hard problem [24]. Exact inference may sometimes be carried out



Chapter 2. Background 10

y

z z1 z2 zN

(a) (b)

y1 yM

Figure 2.2: Bayesian network for a factor analysis model. (a) The Bayesian

network represented with pooled variables where single nodes represent the vectorsy

and z. (b) The elements of the vectorsy and z split are represented by a single node per

scalar. Thea priori independence of the elements of the vectory is now explicit.

e�ciently due to topology, as in tree structured networks, or when there is a closed form

analytical integral, as with the factor analysis model (Section 2.1.1). When exact infer-

ence is intractable, however, an approximate method can be used, such as variational

inference [63, 78], loopy belief propagation [38, 66], or Monte Carlo sampling algorithms

[42, 46, 77].

2.2.1 Exact Inference and Bayes' Theorem

In theory, any posterior distribution can be computed usingBayes' Theorem:

P(xf hgjxf vg) =
P(xf vg; xf hg)

P(xf vg)
=

P(xf vg; xf hg)
P

x f h g

P(xf vg; xf hg)
; (2.5)

where the summation symbol is used to signify both summing over discrete variables and

integrating over continuous variables.

Exact inference methods compute the posterior distribution of the latent variables by

leveraging the structure of the network. One can use the factorization of the joint prob-

ability distribution and the sum-product algorithm to e�ci ently integrate over variables
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in the model [38, 39]. For example, consider a distribution that factors as follows:

P(A; B; C; D ) = P(A)P(B jA)P(CjB)P(D jC): (2.6)

Suppose the distribution of interest isP(AjD), which requires the computation ofP(A; D )

and P(D). These values may be computed as follows

P(A; D ) =
X

B

X

C

P(A; B; C; D )

=
X

B

X

C

P(A)P(B jA)P(CjB)P(D jC)

= P(A)
X

B

P(B jA)
X

C

P(CjB)P(D jC)

(2.7)

P(D) =
X

A

X

B

X

C

P(A; B; C; D )

=
X

A

X

B

X

C

P(A)P(B jA)P(CjB)P(D jC)

=
X

A

P(A)
X

B

P(B jA)
X

C

P(CjB)P(D jC):

(2.8)

The astute observer would notice that many of the computations in Equation (2.7) are

repeated in Equation (2.8). An algorithm known as belief propagation, which abstracts

the repeated computations into messages passed in a network, can be used to e�ciently

compute conditional and marginal distributions in tree structured networks [66].

Inference in Factor Analysis

In the factor analysis model (Section 2.1.1), e�cient exactinference can be carried out

due to the existence of a closed form integral. In vector and matrix notation, the joint

probability is given by

P(z; y) = P(y)P(zjy) =
1

(2� )M=2
e� 1

2 y > y 1
(2� )N=2j	 j1=2

e� 1
2 (z� � y )> 	 � 1 (z� � y ) ; (2.9)

where � is assumed to be equal to0. In Section 2.3.1 it will be shown how to estimate

� and properly account for� 6= 0.
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Rearranging Equation (2.9) yields

P(z; y) / e� 1
2 (y � (I +� > 	 � 1 �) � 1 � > 	 � 1z)> (I +� > 	 � 1 �)( y � (I +� > 	 � 1 �) � 1 � > 	 � 1z)

e� 1
2 z> (	 � 1 � 	 � 1 �( I +� > 	 � 1 �)� > 	 � 1)z

= N (y; (I + � > 	 � 1�) � 1� > 	 � 1z; (I + � > 	 � 1�) � 1)

N (z; 0; (	 � 1 � 	 � 1�( I + � > 	 � 1�)� > 	 � 1)� 1)

= P(y jz)P(z);

(2.10)

and the posterior distribution of the latent variables,P(y jz), is revealed to be a Gaussian

distribution with mean ( I + � > 	 � 1�) � 1� > 	 z and variance (I + � > 	 � 1�) � 1.

The ability to analytically manipulate Gaussian distributions to extract expected

values and variances, which is su�cient to completely describe Gaussian distributions,

makes them particularly attractive when constructing probabilistic models.

2.2.2 Variational Approximations

When exact inference is intractable to perform, an approximate method, such as varia-

tional inference [63], must be used. Here, a known, tractable, and parameterized distri-

bution Q(xf hg) is used to approximate the exact posterior,P(xf hgjxf vg). The parameters

of Q(xf hg), called the variational parameters, should be set so thatQ provides a good

approximation.

A standard \distance" function used when comparing two probability distributions is

the Kullback-Leibler (KL) divergence. The KL-divergence between distributionsQ and

P is given by

D(Q k P) =
X

x

Q(x) log
Q(x)
P(x)

: (2.11)

KL divergence, however, is not a true distance measure as it is not symmetric, D(Q k

P) 6= D(P k Q), and it does not satisfy the triangle inequality. The asymmetry of the

KL-divergence is illustrated in Figure 2.3. In Section 2.3.3 another motivation for using

the KL-divergence is discussed.
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Q(x) = argmin
Q

D(Q k P) Q(x) = argmin
Q

D(P k Q)
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Figure 2.3: Q distribution approximation to P. The bimodal distribution, P, in

solid line, is approximated with a Gaussian distributionQ, in dotted line. (a) The

approximation minimizesD(Q k P), and captures only one of the modes ofP. (b) The

approximation minimizes D(P k Q), and smoothes the two modes into a single central

one

To perform variational approximation, the variational parameters should be set so as

to minimize the KL-divergence betweenQ(xf hg) and P(xf hgjxf vg). However,P(xf hgjxf vg)

is not known, or exact inference would be feasible.P(xf hg; xf vg), is available, and, in the

case of a graphical model, has a simpli�ed form, in which caseD(Q(xf hg) k P(xf hg; xf vg))

can be minimized:

argmin
Q

D(Q(xf hg) kP(xf hgjxf vg)) = argmin
Q

X

x f h g

Q(xf hg) log
Q(xf hg)

P(xf hgjxf vg)

=argmin
Q

X

x f h g

Q(xf hg) log
Q(xf hg)

P(xf hgjxf vg)
+

X

x f h g

Q(xf hg)
1

logP(xf vg)

=argmin
Q

D(Q(xf hg) k P(xf hg; xf vg)) :

(2.12)

D(Q(xf hg) k P(xf vg; xf hg)) is called the free energy of the model,F , and has the

same optimal setting of the variational parameters as the KLdivergence,D(Q(xf hg) k

P(xf hgjxf vg)) since logP(xf vg) is constant with respect toQ.
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Variational Inference in the Factor Analysis Model

Although exact inference in the factor analysis model is feasible as shown in Section 2.2.1,

it will be used to demonstrate how variational inference is carried out.

Let Q(y) assume the following form

Q(y) =
MY

j =1

1
p

2�� j
e

� 1
2� 2

j
(yj � � j )2

: (2.13)

Here, the distribution's mean and variance,� j and � 2
j respectively, are the variational

parameters. This factorized form ofQ(y), where the variablesf yi g are assumed to be

independent in the posterior, is common and is referred to asa mean-�eld approximation.

The free energy,F , is given by:

F =
Z

y
Q(y) log

Q(y)
P(y ; z)

=
Z

y

MY

j =1

Q(yj )

"
MX

j =1

� log(
p

2�� j ) �
1

2� 2
j
(yj � � j )2

#

�
Z

y

MY

j =1

Q(yj )

"
MX

j =1

� log
p

2� �
y2

j

2
+

NX

i =1

� log
p

2� i �
1

2 i
(zi �

MX

j =1

� ij yj )2

#

=
MX

j =1

�
� log� j �

1
2

+
� 2

j + � 2
j

2

�
+

NX

i =1

"

log(
p

2� i ) +

�
zi �

MP

j =1
� ij � j

� 2
+

MP

j =1
� 2

j � 2
ij

2 i

#

or in vector form

= � log� > 1 �
M
2

+
� > � + � > �

2
+

N
2

log(2� j	 j)+

1
2

(z> 	 � 1z � 2z> 	 � 1� � + Tr(�� > 	 � 1��) + � > � > 	 � 1� � )

(2.14)

where1 is a column vector of 1's, � is a diagonal matrix such that � ii = � i and � ij = 0

for i 6= j , and Tr(�) is the trace function1. Note that the vector form above is valid

because 	 is a diagonal matrix (i.e.  ij = 0 for i 6= j ). The free energy can be minimized

1The trace of a matrix is the sum of its diagonal elements. ForA 2 RN � N , Tr( A) =
P N

i =1 aii .
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by iteratively setting its partial derivatives to zero:

@F
@�

= � � � > 	 � 1z + � > 	 � 1� � = 0

� = ( I + � > 	 � 1�) � 1� > 	 � 1z

(2.15)

@F
@�j

= �
1
� j

+ � j +
NX

i =1

� 2
ij � j

 i
= 0

� 2
j =

1

1 +
NP

i =1

� 2
ij

 i

(2.16)

A few interesting observations can be made about the optimalvariational parameters.

The mean of the approximation given in Equation (2.15) is identical to the mean of

the true posterior given in Equation (2.10). The precision (inverse of variance) the ap-

proximation given in Equation (2.16) are the diagonal elements of the inverse covariance

matrix of the true posterior given in Equation (2.10). If theposterior was approximated

using a full Q distribution ( i.e. one with a full covariance matrix, rather than a diagonal

one), the true posterior would have been recovered using this approach. Finally, note

that by using vector notation, a closed form solution to� was obtained. If scalar notation

was used,M equations with M unknowns would have been obtained, and much more

work would have to be done to compute the closed form solution. When using variational

inference, it is therefore a good idea to try both vector and scalar notations to ensure

that simple expressions are used.

2.2.3 Sampling

Variational inference methods can be powerful analytical tools for approximating poste-

rior distributions. However, situations in which they do not present a viable option often

arise. For example, the joint distribution, P(xf vg; xf hg), may not yield an analytically

tractable free energy. Alternatively, it may be important to maintain many dependencies

between hidden variables, making both exact and variational inference intractable. In

these situations, sampling methods [42, 77] may be more appropriate.
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Sampling from the posterior distribution can provide information about the posterior

distribution and enable integration over some or all of the latent variables. For instance,

the expected value of a random variableX given by

E[X ] =
X

x

xP [X = x] (2.17)

may be estimated from sample values by simply taking the sample mean:

E[X ] �
1
N

NX

i =1

x i ; (2.18)

wherex i is the i th sample. Other statistics, such as mode, variance, and correlation, may

be similarly estimated using the sample mode, sample variance, and sample correlation.

In general, random number generation methods start by generating psuedo-random

uniform distributions. Various methods exist for converting this uniform distribution to

more interesting distributions.

Transformation Methods

Transformation methods provide simple and e�cient algorithms for generating random

distributions [91]. Unfortunately, their use is limited to a few simple distributions.

Nonetheless, they form the backbone of most other sampling algorithms.

As an example, a uniform random variable,U 2 [0; 1), can be transformed into an

exponential random variable,V, by letting V = � logU:

f (v) =
f (u)

jg0(u)j
=

1
j � u� 1j

=
1
ev

= e� v; (2.19)

wheref (v) and f (u) are the probability density functions (PDF) of v and u respectively,

and g0(u) is the �rst derivative of the transformation applied to u.

Rejection Sampling

Rejection sampling is a useful approach when transformation methods alone cannot be

used to generate the desired distribution. With rejection sampling, samples are �rst ob-

tained from a surrogate distribution with densitiesf � (v) � Cf (v) 8v for some constant
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Figure 2.4: Rejection sampling. A surrogate Gamma distribution f � (v) (dashed line)

is used to sample from the desired distributionf (v) (solid line). Samples are accepted

with probability f (v)=Cf � (v) and rejected otherwise.

C. Samples generated from the surrogate distribution,f � (v) are accepted with proba-

bility Cf v (v)
f � (v) , and rejected otherwise. The process is repeated until a su�cient number of

samples are obtained [115].

Markov Chain Monte Carlo Sampling

Possibly the most powerful sampling algorithms fall into the category of Markov chain

Monte Carlo (MCMC) methods. These algorithms can sample from a wide range of

distribution, but have rigorous requirements that must be adhered to [77].

A Markov chain is a series of random variables (states),x(0) ; x(1) ; x(2) ; : : :, for which

the probability distribution of variable x(i ) is completely determined by then preceding

states, wheren is the order of the chain. For sampling purposes it is su�cient to consider

�rst order Markov chains:

P(x(i ) jx(0) ; x(1) ; : : : ; x(i � 1)) = P(x(i ) jx(i � 1)): (2.20)

The marginal distribution at time i is denoted asPi (x). The transition probability from

state x at time i to state x0 at time i + 1 is given by Qi (x0jx) = P(x(i +1) jx(i )). A Markov
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chain is said to be homogeneous if8i; Q i (x0jx) = Q(x0jx). The distribution of state x(i +1)

can be found by applying the transition probability

Pi +1 (x) =
X

x

Pi (x)Q(x0jx): (2.21)

An invariant, or stationary, distribution, � (x), is one that once reached, persists

forever. Such a distribution would remain invariant with respect to the transition prob-

ability:

� (x0) =
X

x

� (x)Q(x0jx): (2.22)

MCMC techniques sample from the desired distribution,P(x), by constructing ergodic

Markov chains for which P(x) is its invariant distribution. An ergodic chain is one

for which none of the states are periodic and have a positive probability of occurring.

Running the chain for a long time should hopefully result in achieving the stationary

distribution, at which point the states of the chain may be kept as samples from the

desired distribution.

The properties of Markov chains have been studied extensively, as well as the various

requirements for achieving a desired invariant distribution [36, 109]. Given an ergodic

Markov chain, detailed balance is a su�cient (though not necessary) condition for con-

structing a correct sampling chain. Detailed balance requires the probability of being in

any state and transitioning from it to a di�erent state to be the same as the probability

being in the second state and transitioning from it to the original state:

� (x)Q(x0jx) = � (x0)Q(xjx0): (2.23)

It is easy to show that a distribution � (x) that satis�es detailed balance is an invariant

distribution of the Markov chain:

P(x0) =
X

x

� (x)Q(x0jx) =
X

x

� (x0)Q(xjx0) = � (x0)
X

x

Q(xjx0) = � (x0) (2.24)

Detailed balance is a su�cient condition for the proper construction of a MCMC

method, though it is not a necessary condition. Nonetheless, it is widely used due to its

simplicity.
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Gibbs Sampling Given a state vector,x = f x1; x2; : : : ; xng, Gibbs sampling pro-

ceeds by sampling each of then elements from their exact posterior distribution given

that the rest of the state is kept �xed, P(x i jx1; : : : ; xi � 1; x i +1 ; : : : ; xn ) [42]. It is simple

to show that each such sampling step satis�es detailed balance. A complete iteration,

however, where each variable is sampled in turn does not satisfy detailed balance, but

does leave the desired distribution invariant. For the restof this thesis, the sampling of

a single variable is referred to as a \Gibbs Step", and a full iteration of sampling each

variable exactly once is referred to as \Gibbs Sweep".

Metropolis-Hastings Algorithm Perhaps the most commonly used MCMC al-

gorithm, the Metropolis-Hastings algorithm, was proposedin 1970 by Hastings [46] as a

generalization of an earlier algorithm proposed by Metropolis et. al. [74]. A new state,

x � , is proposed based on the current state,x, by drawing a sample from some proposal

distribution, Q(x � jx). The proposal is then accepted with probability

a(x; x � ) = min
�

1;
P(x � )Q(xjx � )
P(x)Q(x � jx)

�
(2.25)

If the proposal is rejected, the current state is repeated inthe sampler. Once again, it is

trivial to demonstrate that the Metropolis-Hastings algorithm satis�es detailed balance.

Often, the proposal distribution involves making small changes to explore the space

around the current state. In these situations, successive samples are highly correlated,

as is often the case of Gibbs sampling. Such highly localizedproposal distributions may

be inappropriate for multi-modal distributions, where thesampling procedure would be

required to slowly traverse regions of low probability between modes. In cases where the

chain does not e�ciently sample from the desired posterior,the chain is said to have

\poor mixing" 2.

2A properly constructed chain is in theory guaranteed to, with in�nite computation time, provide
samples from the desired distribution, even if the mixing ispoor. In practice, of course, good mixing is
desirable.
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2.3 Learning in Bayesian Networks

Several approaches for inference in a probability model have been presented in the pre-

ceding sections. It has been assumed that while carrying outinference, model parameters

are available. However, this is often not the case, and various techniques are available

for estimating these parameters.

2.3.1 Maximum likelihood and maximum a posteriori estima-

tion

When a model does not include hidden variables, or the hiddenvariables can be marginal-

ized out of the model, either analytically or through numerical methods, as discussed in

Section 2.2), maximum likelihood (ML) or maximuma posteriori (MAP) estimates can

be used for the parameters.

The model's likelihood function is given by

L (� ) = P(xj� ): (2.26)

The ML estimate, as the name suggest, is the setting of the parameters that maximize

the likelihood function. In contrast, the MAP estimate involves introducing a prior for

the parameters' values, and maximizing the posterior density over the parameters. This

prior may re
ect the user's belief regarding the value of theparameters, or it may simply

be chosen to provide better model predictions.

P(� jx) =
P(� )P(xj� )

P(x)
/ P(� )L (� ): (2.27)

Finding ML or MAP estimates usually involves a search of the parameter space. Algo-

rithms such as conjugate gradients, Newton's method, BFGS,and others are commonly

used for �nding local optima [70, 80, 104].
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Maximum Likelihood Estimation in Factor Analysis

Recall that the factor analysis model is given by

z = � y + � + � : [2.2]

In the discussion about inference (Section 2.2.1), it was assumed � = 0. This can be

achieved by subtracting the maximum-likelihood estimate of � from z, which is simply

the sample mean ofz.

2.3.2 The Expectation-Maximization Algorithm

In many Bayesian networks involving latent variables, direct ML estimation of the pa-

rameter is impractical if not impossible, since computing the likelihood, � , requires in-

tegration over the hidden variables, which is often intractable as discussed in Section

2.2. The expectation-maximization (EM) algorithm �nds a local maximum for P(xf vgj� )

by iteratively inferring the posterior distribution over latent variables while keeping the

parameters �xed, and maximizing the likelihood of the \completed data" obtained from

the inferred posterior [25, 78].

To use the EM algorithm, the parameters are initialized to some initial guess,� (0) , at

time t = 0. The following two steps are iterated for timest = 1; 2; : : : until convergence:

� E-Step: computeQ(t )(xf hg) = P(xf hgjxf vg; � (t � 1))

� M-Step: compute� (t ) = argmax
�

EQ( t � 1) [logP(xf vg; xf hgj� )]

The EM Algorithm for Factor Analysis

First presented by Rubin and Thayer [98], the exact EM algorithm can be derived for

the factor analysis model. As shown in Section 2.2.1, the exact posterior of y (needed in
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the E-step) is given by a Gaussian distribution with mean andvariance:

mean: m (t+1) = ( I + � (t )> 	 (t ) � 1
� (t ) )� 1� (t )> 	 (t ) � 1

z (2.28)

variance: S(t+1) = ( I + � (t )> 	 (t ) � 1
� (t ) )� 1 (2.29)

To derive the updates for the M-step, �rst compute

L = EQ [
X

i

logP(xf vg
i ; xf hg

i j� )] =
X

i

X

x f h g
i

Q(t ) (xf hg
i ) logP(xf vg

i ; xf hg
i j� )

=
X

i

Z

y i

Q(t ) (y i )
�
� M

2 log(2� ) � 1
2y>

i y i � 1
2 log(2� j	 j) � 1

2(zi � � y i )> 	 � 1(zi � � y i )
�

=
X

i

� 1
2 log(2� j	 j) � 1

2z>
i 	 � 1zi + 1

2m (t )>
i � > 	 � 1zi + 1

2z>
i 	 � 1� m (t )

i

� 1
2

�
Tr(� > 	 � 1� S(t )

i ) + m (t )>
i � > 	 � 1� m (t )

i

�
+ constant;

(2.30)

wherei indexes the training examples, andm i and Si are the mean vector and covariance

matrix of y i as given in Equation (2.28) and (2.29). To �nd the setting of the parameters

that maximize L , di�erentiate and set to 0:

@L
@�

=
X

i

	 � 1zi m
(t )>
i � 	 � 1�( S(t )

i + m (t )
i m (t )>

i = 0

) � (t ) =
� X

i

zi m
(t )>
i

�� X

i

S(t )
i + m (t )

i m (t )>
i

� � 1
(2.31)

@L
@	 � 1

=
X

i

1
2 	 � 1 � 1

2z>
i zi + zi m

(t )>
i � (t )> � 1

2 � (t )S(t )
i � (t )> � 1

2 � (t )m (t )
i m (t )>

i � (t )>

) 	 (t ) � 1
=

P
i z>

i zi � zi m
(t )>
i � (t )>

N

(2.32)

Note that the update for � (t ) in Equation (2.31) does not depend on 	, and it should

therefore be updated �rst, and then used in Equation (2.32) when updating 	 (t ) .

2.3.3 Variational Expectation Maximization

When the exact posterior is unavailable and variational inference is used (as discussed in

Section 2.2.2), a \variational EM" algorithm can be utilized. Here, the exact posterior,
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P(xf hgjxf vg) is replaced with an approximateQ(xf hg) in the E-step. This Q distribution

is used to compute the updates for the model's parameters in the M-step [63].

There is an alternate derivation of variational EM. Supposethat when maximizing

P(xf vgj� ) =
P

x f h g P(xf vg; xf hgj� ) the summation is intractable. However, a lower bound

can be maximized due to Jensen's inequality (again the property that argmax
�

P =

argmax
�

logP is used):

log(P(xf vgj� )) = log
� X

x f h g

P(xf vg; xf hgj� )
�

= log
� X

x f h g

Q(xf hg)
Q(xf hg)

P(xf vg; xf hgj� )
�

�
X

x f h g

Q(xf hg) log
� P(xf vg; xf hgj� )

Q(xf hg)

�
= �F (P; Q);

(2.33)

which is the (negative) KL-divergence betweenQ and P (Section 2.2.2). Several inter-

esting properties based on the above derivation can be noted. The KL-divergence is

minimized when Q(xf hg) = P(xf hgjxf vg; � ), leading to the exact EM algorithm. This

in turn implies that the EM algorithm is maximizing a lower bound on the probability

of the data using coordinate decent (updating one coordinate at a time), and therefore

incomplete E- and M-steps are acceptable. For example, the algorithm may update the

posterior distribution for a subset of the training data in the E-step, or use a few itera-

tions of gradient decent in the M-step. It has been noted thatthese type of updates can

lead to faster convergence [78].

2.3.4 Bayesian Learning

In previous sections, ML and MAP estimations of the model's parameters were explored.

By using these methods, it is assumed that enough examples are available to accurately

estimate the single correct setting of the parameters. A di�erent approach employed in

Bayesian statistics is to treat the model's parameters in a manner akin to that of latent

variables. By placing a prior distribution on the parameters and marginalizing them
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out, better predictions can be achieved [49]. Additionally, since the uncertainty in the

parameter estimation is properly accounted for, fewer training examples are generally

needed, even when using complex models.

Unfortunately, most Bayesian models cannot be handled analytically. With the excep-

tion of a few simple models, Bayesian models generally resort to sampling or variational

methods to estimate the posterior distributions of the parameters and hidden variables.

2.4 Alternative Splicing

The following sections cover the biological background necessary for studying models

of alternative splicing. A brief overview of the relevant molecular biology is provided,

followed by a summary of wet-lab experiments, as well as computational algorithms.

2.4.1 The Life Cycle of Biomolecules

Whether it is a single cell bacterium, or part of a complex multicellular organism, each

cell carries a complete copy of the genome of the organism to which it belongs. The ge-

nomic information is stored in the double stranded deoxyribonucleic acid (DNA) molecule

(Figure 2.5). DNA is a long sugar-phosphate polymer made up of four basic monomers,

adenine (A), guanine (G), cytosine (C) and thymine (T), called nucleotides (nt). A

sequence of these four nucleotides encode biological functions of an organism in much

the same way that a computer program may be encoded in a sequence of 1's and 0's.

The nucleotides are joined together through their sugar (deoxyribose) substrate to form

a single strand of DNA, and through complementary base pairing to form the familiar

double helix. The nucleotides may only form speci�c base pairs { A binds to T, and C

binds to G, an important feature that enables the cell to create complementary copies of

existing DNA strands.

The biological processes within a cell are carried out usingenzymes, which are proteins
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Figure 2.5: DNA and RNA structure. DNA is comprised of two strands of long

sugar phosphate backbones wrapped in a double helix. The twostrands are joined

through complementary base pair binding of A to T and G to C. Transcription to RNA

is performed on the \antisense" strand, where the RNA is elongated from its 5' to the 3'

direction, and the resulting RNA contains the same sequenceas the \sense" strand (with

T replaced by U)

and other molecules that interact with one another to perform essential cellular functions.

To convert the information on the DNA to proteins, an intermediary molecule called

ribonucleic acid (RNA) is used. The RNA molecule corresponds to a segment of a single

strand of DNA, except that the substrate sugar is ribose, andthymine is replaced by uracil

(U), which similarly forms a base pair with adenine (A). RNA strands are transcribed

from DNA by unwinding the double helix of the DNA and creatinga complement copy

of RNA nucleotides (Figure 2.5. Transcription occurs on theantisensestrand, and the

RNA is elongated from 5' to 3'3, resulting in a sequence identical to that found on the

sensestrand, with thymine replaced by uracil. The descriptions of sense and antisense

3Ribose and deoxyribose, the sugar substrates of RNA and DNA respectively, contain �ve carbon
molecules, numbered 1', 2', 3', 4', and 5'. When forming a chain, the 5' carbon is linked to the next 3'
carbon via a phospate group, while the terminal 3' and 5' are not linked to a phosphate group. Directions
on DNA and RNA strands can therefore be unambiguously identi�ed by specifying 3' or 5' ends. RNA is
always read 5'! 3', making the 3' untranslated region (UTR) downstream of the protein coding portion
of the gene.
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strands are only relevant in the context of a particular transcript, as the two DNA

strands serve one function or the other for di�erent transcripts. Under some situations,

RNA strands may be reversed-transcribed into complementary DNA (cDNA), either in

vivo (in life, in the cell), as in the case of retro-viruses (such as HIV), or in vitro (in

glass, experimentally), as in the case of reverse transcription polymerase chain reaction

(RT-PCR).

One critical function of RNA is to bring protein coding information from the DNA

molecules in the nucleus to the protein synthesis mechanism, the ribosome, in the cyto-

plasm. This type of RNA is called messenger RNA (mRNA). Othertypes of RNA, such

as small nuclear RNA (snRNA) and ribosomal RNA (rRNA), act asenzymes, usually in

conjunction with proteins and other molecules. Proteins are translated from mRNA by

joining together amino acids through peptide bonds. Each sequence of three nucleotides

in the mRNA, called a codon, codes for for one of twenty possible amino acids as shown

in Table 2.1.

Genes can be de�ned as sections of the DNA that code for a particular function,

much like a cohesive subroutine in a computer program. Most genes are protein-coding

genes, though there are many non-protein-coding genes, whose end product is an RNA

molecule [2, 68].

2.4.2 Gene Regulation

During transcription, the super-coiled double stranded DNA is unwound and one of its

strands serves as a template for RNA synthesis. There are three di�erent types of RNA

synthesizing molecules, called RNA polymerase I, II, and III. All protein coding genes

are synthesized by RNA polymerase II.

Upstream of the transcription start site in the DNA is the promoter region, which

contains information necessary to regulate gene activation. The promoter region, typi-

cally a few thousands of nucleotides long, consists of a collection of cis-acting sequences
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Table 2.1: Many-to-one mapping of codons to amino acids. The leftmost column

indicates the �rst nucleotide in the codon, the header of a column indicates the middle

nucleotide, and the rightmost column indicates the third nucleotide. For example, AUG

codes for Methionine.

U C A G

U
Phe

Ser
Tyr Cys

U
C

Leu STOP
STOP A

Trp G

C Leu Pro
His

Arg

U
C

Gln
A
G

A
Ile

Thr
Asn Ser

U
C

Lys Arg
A

Met G

G Val Ala
Asp

Gly

U
C

Glu
A
G

(can only a�ect genes on the same chromosome or DNA molecule,i.e. nearby genes),

often referred to as motifs, that serve as binding sites. Thetrans-acting (can a�ect genes

on other chromosomes or DNA molecules) transcription factors bind to these motifs and

initiate transcription downstream of the cis-acting elements. Binding sites for transcrip-

tion factors tend to be of medium length, typically 10{40nt, with varying degrees of

speci�city.

The transcription factors bind to the motifs in the promoterregion, either directly or

via a mediator, to guide and position the RNA polymerase II toinitiate RNA synthesis.

This process is typically quite complex, involving activators and repressors binding the

DNA, as well as co-activators and co-repressors binding to the transcription factors.
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There are two main classes of transcription factors for RNA polymerase II. The �rst

consists of general purpose factors that are used in most or all transcription activation.

These factors recognize speci�c sequences, usually at particular positions upstream of

the transcription start site, and serve to guide the transcription. The second class of

factors consists of tissue-restricted transcription factors, which recognize speci�c binding

sequences, whose location typically vary widely, and serveto regulate genes in tissue

speci�c manner.

A more recent discovery is a class of short RNA molecules, dubbed micro RNA

(miRNA) that contribute to gene regulation. These short (20{25 nt) RNA sequences con-

tain complementary sequences and form hairpin loops. As non-translated genes, miRNA

are typically found in intra-gene intronic elements and intergenic regions, usually quite

far from previously known protein coding genes [47].

While not all regulation mechanisms of miRNA are well understood, it has been

established that miRNA is often loaded into a RNA induced silencing complex (RISC)

and bind to the 3` untranslated region (UTR). There is evidence that miRNAs participate

in both translational interference and mRNA degradation mechanisms. [47, 50].

2.4.3 RNA Processing

In eukaryotic cells, which are cells containing nuclei and other components and of which

all multicellular and some single cell organisms are made, protein-coding genes are not

typically found as contiguous segments in the DNA. Instead,most genes contain both

exons, which contain the peptide-coding information, and introns, which do not. Before

being sent to the ribosome, the transcribed RNA, at this point called precursor mRNA

(pre-mRNA), must be processed and the introns removed. Additionally, a multi pro-

tein complex performs polyadenylation on the pre-mRNA, where adenine nucleotides are

added at the end of the mRNA strand, to produce the mature mRNA.

Splicing of pre-mRNA is carried out through a complex known as the spliceosome.
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Figure 2.6: Splicing of pre-mRNA . (a) The splicing signals are found at the splice

sites, branch point, and pyrimidine-rich region. (b) The spliceosome is assembled on the

pre-mRNA, forming base-pair bonding with the branch point and 5` splice site. (c) The

intron is separated from the the 5` exon and forms the lariat.(d) The exons are joined,

the spliceosome disassociates, and the lariat is digested.

Five U-rich small nuclear ribonucleoprotein particles (snRNP), along with numerous

proteins, interact with each other and the pre-mRNA strand in an ordered sequence to

form the spliceosome. With the assistance of aiding proteins that detect the 3' splice site

and the pyrimidine4 rich region (Figure 2.6a), U2 forms a base pair bond with the branch

point. Meanwhile, U1 binds to the 5' splice site, and U4 and U6base-pair to each other.

The �ve snRNPs then join together to form the spliceosome (Figure 2.6b). Next, the

intron's 5' end is dissociated from the 5' exon and is joined to a conserved \A" nucleotide

in the branch point via a covalent bond to form the lariat (Figure 2.6c). Finally, the 3'

end of the intron is cut from the 3' exon and is replaced by the 5' exon. The lariat and

spliced mRNA dissociate, followed by the dissociation of the snRNPs, and the lariat is

broken down (Figure 2.6d) [43, 65].

Nonsense mediated mRNA decay (NMD) is an important post transcriptional mecha-

4Pyrimidines are the C, T, and U nucleotides, which have a single carbon/nitrogen ring, while the
purines are the A and G nucleotides, with two such rings.
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nism that ensures that invalid mRNA transcripts are discarded and do not get translated.

The NMD mechanism is activated when a premature terminationcodon (PTC) is de-

tected in the mRNA transcript. A PTC triggers NMD when it is located more then

50-55nt upstream of the last exon-exon junction. NMD appears to be triggered by exon

junction complexes that are deposited 20-24nt upstream of every exon-exon junction

during splicing. When a PTC is not present, the exon junctioncomplexes are removed

during the pioneer round of translation, and NMD is not triggered. NMD appears to

serve mostly as a surveillance mechanism to remove erroneous transcripts that can arise

from mutations or splicing errors [71, 83].

Alternative Splicing of RNA

Alternative splicing (AS) is the phenomena whereby the pre-mRNA may be spliced in

a variety of combinations to potentially produce many possible transcripts. While the

order or direction (sense) of the exons may not be changed, single or multiple exons may

be dropped, an exon may contain more than one potential splice sites, two exons may

be mutually exclusive, or an entire intron may be retained (Figure 2.7). Of these, single

cassette exon skipping is the most frequent [13]. The various possible mature mRNA

forms for a common gene are calledisoforms.

It is currently estimated that as many as 85% of all human genes are alternatively

spliced, making AS a much more widespread phenomena than previously suspected [84].

These �ndings indicate that AS could account for much of the increased complexity as-

sociated with higher eukaryotes, which cannot be accountedfor by small di�erences in

gene counts [13]. Other than contributing to the expansion of an organism's genetic

repertoire, AS is known to play critical roles in the regulation of development, cellular

di�erentiation, maintenance of the di�erentiated state, and apoptosis. In addition, dis-

ruption of splicing is frequently associated with human diseases [14, 20]. The mechanisms

underlying AS and its regulation are relatively poorly understood.
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Single cassete exon

Alternative 3` (donor) splice site

Alternative 5` (acceptor) splice site

Mutually exclusive exons

Intron retention

(a)

(b)

(c)

(d)

(e)

Figure 2.7: Four types of AS. Boxes represent exons and lines represent introns, with

the possible splicing alternatives indicated by the connectors. (a) Single cassette exon

inclusion/exclusion. The 
anking exons are constitutive exons (exons that are included

in all isoforms) and the center exon may be skipped (b) Alternative 3' (or donor) splicing

sites. Both exons are constitutive, but may contain alternative donor splicing sites.

(c) Alternative 5' (or acceptor) splicing sites. Both exonsare constitutive, but may

contain alternative acceptor splicing sites. (d) Mutuallyexclusive exons. One of the two

alternative exons may be included, but not both. (e) Intron inclusion. An intron may

be included in the mature mRNA strand.
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2.5 Experimental Biology

There are a number of common methods for measuring gene expression. Of main interest

are those methods that measure protein and mRNA abundances.These methods can

be categorized as either low- or high-throughput methods, with low-throughput methods

generally restricted to dozens of measurements, and high-throughput methods provid-

ing upwards of hundreds of thousands measurements in a single experiment. While

high-throughput methods have been utilized heavily in recent years with much success,

low-throughput methods are generally accepted to be more accurate because each mea-

surement is carefully acquired and validated by hand.

2.5.1 Low-throughput Methods

Traditionally, mRNA abundances have been studied using techniques such as RT-PCR,

northern blotting, and RNAase protection assays. All the above methods share the

common element of labelling RNA strands of interest (i.e. corresponding to a particular

gene or isoform) with a radioactive tag to measure its abundance within the sample.

RT-PCR reverse transcribes (RT) the mRNA back to cDNA. The strands of interest

are ampli�ed using polymerase chain reaction (PCR), in which the DNA is iteratively

synthesized from available single strands, and separated,resulting in exponential growth

in the number of copies. The sample is then pulled through a viscous gel by an external

electric �eld (DNA is negatively charged), which separatesthe DNA molecules in the

sample according to mass: lighter, shorter strands travel faster and therefore further

through the gel than heavier, longer strands. The gel is exposed to photosensitive or

x-ray �lm, and the labelled DNA can be seen as bands, with bandintensity dependent

on the amount of mRNA originally in the cell, and location dependent on strand length.

In Northern blotting, unampli�ed RNA is passed through the gel and transferred to

a special blotting membrane such as nitrocellulose or nylon. A labelled probe targeting
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the sequence is hybridized to the blot revealing its location.

The most sensitive of these methods, RNAase protection assays, uses the labelled

probe to protect the targeted mRNA from a digesting enzyme (RNAase) that breaks

down single stranded RNA. As in the previous methods, the sample is run on a gel and

exposed to x-ray �lm to detect the presence of the protected target RNA.

2.5.2 High-throughput Methods

Microarrays

In the early 1990s, microarray technology emerged to simultaneously measure expression

levels of thousands of DNA sequences. During the microarrayfabrication phase, probes

are deposited onto a substrate, typically a glass microscope slide. Each set of probes

typically contains thousands of short strands (25-60 mers)targeting speci�c genes, exons,

or even exon-exon junctions. As in RT-PCR, mRNA is extractedfrom the cell, reverse

transcribed to cDNA, and labelled with red or green 
uorescent dye tags (cy3 and cy5

respectively). When the sample of labelled DNA is washed over the slide, complementary

strands of DNA from the sample hybridize to the probes on the array forming A-T and

C-G pairings. The slide is then scanned and the 
uorescent intensity is measured at each

probe. The intensity measurement is proportional to the amount of 
uorescent cDNA

hybridized to the probe, and ultimately the amount of protein being produced in steady

state in the cell.

Microarrays have revolutionized the way biologists measure cell activity. Previously,

each gene participating in cell activity would be studied, its regulation analyzed, and

its e�ect revealed. This enabled understanding of speci�c mechanisms, but obscured

common trends and patterns. While that approach remains invaluable and ongoing,

microarrays have enabled studies of thousands of genes at a time, discovery of new

pathways and interactions, and analysis of genome-wide trends, such as those revealed
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in whole genome studies [29, 53].

High Throughput Sequencing

Most recently, DNA and RNA sequencing technologies have emerged as a viable approach

to measuring biomolecule contents of samples. New development in the �elds now en-

able large-scale automatic sequencing of DNA and RNA content of samples. These

approaches provide short read segments (32-500nt), which can then be mapped to the

relevant genome. The number of times a segment of RNA has beensequenced has been

shown to be highly correlated to the expression level of the corresponding gene [44, 72].

The resulting data is referred to as mRNA-Seq data.

High throughput sequencing has been recently applied for analysis of alternative splic-

ing complexity in human tissues. New splice junctions were detected in approximately

20% of multiexon genes, many of which are tissue speci�c. By combining mRNA-Seq

and expressed sequence tags, it was estimated that transcripts from approximately 95%

of multiexon genes undergo alternative splicing and that there are approximately 100,000

intermediate- to high-abundance alternative splicing events in major human tissues.

From a comparison with quantitative alternative splicing microarray pro�ling data, it

was shown that mRNA-Seq data provide reliable measurementsfor exon inclusion levels

[84].

2.6 Detection of Regulatory Factor Binding Sites

Finding binding sites of regulatory factors is one of the most important tasks in decipher-

ing the genetic code. Most regulatory factors bind to speci�c target sequences, commonly

known as motifs. Motifs are typically short (6-50nt), and contain degeneracies in some

of the positions (i.e. not all positions are completely conserved, and some may contain

any one of two, three, or all four nucleotides)
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A common representation for motifs is that of a consensus sequence, possibly with

the use of the IUB/IUPAC5 standard alphabet to represent ambiguous positions in the

motif [81]. The consensus sequence representation works well for restriction enzymes,

which typically have (nearly) fully conserved binding sites. Regulatory factors, however,

typically have motifs with high variability, where often only one or two positions in the

motif are conserved, while the other positions exhibit degeneracy.

A position weight matrix (PWM), sometimes called position speci�c scoring matrix

(PSSM), represents a motif by providing a score for each letter at each position. This

provides a 4� ` matrix of scores, wherè is the length of the motif. To calculate the

score of a candidate sequence, the scores of the individual letters are added. High scoring

sequences are then associated with the motif, while low scoring sequences are rejected.

PWMs usually use either normalized frequency counts or log odds over a background

distribution for the scores. The simplifying assumption when using PWMs is that each

position is independent of the others. Models with dependencies have been used, but can

lead to over�tting of parameters due to the sparseness of thedata [11, 106]

2.6.1 Experimental Setup for Motif Finding

To apply the computational methods to be described in Section 2.6.2, it is required to

de�ne groups of sequences that are targeted by a common regulatory factor. Sequence

elements that are common to these sequences then serve as candidate motifs for the factor

in question. Several common techniques are described below.

SELEX

SELEX (systematic evolution of ligands by exponential enrichment) allows for the si-

multaneous screening of large pools of DNA for a particular functionality { in this case,

5IUPAC alphabet uses an extended symbol set beyond A, C, G, andT, to represent nucleotides
alternatives (e.g. Y represents the pyrimidines C or G) and triplets of nucleotides. The symbol N
represent \any" nucleotide, and is common even when using only the four basic symbols.



Chapter 2. Background 36

a regulatory factor. With SELEX, a large pool of random DNA issynthesized, usually

containing 1015 di�erent DNA molecules. The binding agent is then used to extract the

DNA target molecules to which it binds. The targets are puri�ed and ampli�ed using

PCR. This process is repeated multiple times until a pool containing only a few unique

DNA sequences remains, which contains the binding targets [34, 64]. The �nal sample is

sequenced, and since the sequences are usually short (a few dozen nucleotides), the motif

can be usually found quite easily.

While simple, SELEX has several drawbacks. First, only one regulatory factor can

be analyzed at a time, and that factor must be known (node novodetection of motifs).

Second, it has been shown that SELEX can both miss binding targets and �nd super
uous

ones [64], since the experiment is conductedin vitro and there are additional factors that

may act to suppress or enhance bindingin vivo.

Microarray Experiments

One of the most popular experiments for which microarrays (Section 2.5.2) have been

used is to �nd genes that are co-expressed under various conditions, such as di�erent

tissues, di�erent stress conditions,etc. The common assumption and motivation is that

many of the genes that are co-expressed are expected to be co-regulated (i.e. regulated by

the same transcription factors). An examination the promoter region of these genes may

lead to discovery of common motifs that serve as the binding sites for common factors. Of

course, not all co-expressing genes are necessarily co-regulated. Some co-expressing genes

may regulate one another, participate in common pathways without being co-regulated,

or simply to be co-regulated only under the subset of possible conditions that were tested.

As such, it is not usually expected that the common motifs appear in every sequence,

but rather that it would appear in \unusually large" number of them. The de�nition of

\unusually large" depends on the data quality, application, and algorithm used to detect

the motifs.
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Immunoprecipitation Experiments

ChIP-chip experiments are another common technique for establishing a group of se-

quences with a common binding site. It combines Chromatin immunoprecipitation

(ChIP) with microarrays (chip) to extract sequences. ChIP-Chip experiments provide

clusters of DNA sequences, about 1,000nt long, that bind to acommon proteinin vivo.

Full details on this technique can be found elsewhere [16]. More recently, this technology

have been combined with high throughput sequencing (Section 2.5.2) to generate what

has been dubbed ChIPSeq data [12, 59]. While these approaches have been highly suc-

cessful in detecting binding sites and generating accuratemotif models, they have similar

drawbacks to SELEX in that the experiment requires known regulatory factors.

Cross-linking Immunoprecipitation (CLIP) performs a similar function for RNA-

protein complexes. This enable the detection of binding sites of RNA binding proteins,

such as splicing factors. Once again,de novodetection of motifs is not possible, as only

known binding proteins can be used [58].

Phylogenetic and Conservation Analysis

Some of the major successes in identifying transcription factor binding sites have come

from comparative genomics, whereby the promoter regions ofortholog6 genes in two or

more genomes are aligned. Since the promoter is non-coding,it is commonly assumed

that any conservation observed in the region would indicatefunctionality (if a region

of DNA is non-functional, there is no evolutionary pressureto conserve the sequence)

[17]. Phylogenetic footprinting, the task of identifying ortholog genes across species is a

challenging topic of active research [37].

6Homolog: A gene related to a second gene by descent from a common ancestral DNA sequence.
Orthologs: genes in di�erent species that evolved from a common ancestral gene by speciation.
Paralogs: genes related by duplication within a genome. Homolog genes may therefore be either

orthologs or paralogs.
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2.6.2 Computational Methods

As one of the oldest and most important problems in computation biology, motif �nding

has been tackled with a wide variety of algorithms. Most commonly, de novo motif

detection algorithms represent the motif as either a consensus sequence or a PWM to

detect over-represented motifs in a group of sequences. Themodel used for the motif

(PWM, consensus, etc.), the de�nition of background distribution (hidden markov model,

training examples, etc.), the cost function, and the algorithm used to optimize the cost

function are the de�ning properties of the various motif �nding algorithms.

Statistical approaches generally represent the motif using a central consensus se-

quence, allowing mismatches or extended alphabet representation. Algorithms di�er in

the choice of statistical test, data structure used to e�ciently compute signi�cance levels,

and background model de�nition. For example, Oligo/Dyad Analysis [113, 114] uses a

binomial distribution as the null hypothesis, where the probability of a k-mer is com-

puted based on the entire genome; SeedSearcher [9] uses Fisher exact test, based on

the hyper-geometric distribution, and allows for mismatches; Yeast Motif Finder (YMF)

[101, 102] uses z-scores (number of standard deviation) with a limited IUPAC alphabet

that allows single and double nucleotide information; Weeder [86{89] and MITRA [31]

search the sequences for \words" (allowing mismatches) that appear more thann times,

wheren is a user de�ned parameter.

Some of the algorithms are adapted to explicitly search dyadmotifs, where the motifs

contains highly conserved edges, with a variable length gap(MITRA, Oligo/Dyad Analy-

sis, YMF), while others emphasize highly conserved core sequence with higher variability

near the edge of the motif (SeedSearcher). Additionally, the de�nition of background

varies by either using base distribution using statistics derived from the genome, or using

an explicit \negative" set (a set of sequences that should not over-represent the motif)

to de�ne the null distribution.

Algorithms using PWM representation are varied in their approaches. MEME [7, 8]
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models the data as \patches" drawn from a mixture of background distribution and a

single motif, taking care to not use overlapping patches so as to avoid long sequences

of repeating elements. Upon convergence, MEME stochastically masks the areas of the

sequence drawn from the motif, and repeats. MEME continues until no statistically

signi�cant motif can be found. The themes and elements introduced by MEME were

utilized by many other algorithms since it was �rst introduced in 1995. Most notably,

Improbizer [3] improves the background model to an HMM, and does not break the

sequences into patches, and DEME [94] incorporates the framework into a discriminative

setting of positive and negative examples.

Another common approach is to use Gibbs sampling for motif detection. Originally

proposed in 1995 [79], an initial set of binding sites is re�ned using Gibbs sampling steps

for the position of the motifs in the sequences. Here, too, algorithms defer in the choice

of cost function, such as model probability [35, 52, 97, 108], information content [41, 48],

or frequency thresholding [67].

Two probabilistic algorithms of note are LOGOS [119] and CisModule [124]. LOGOS

uses a principled generative model that represents sequences as Hidden Markov Model

switching between background and motif states. E�cient inference is carried out using

the forward-backward algorithm, and model parameters are learned using variational

Bayesian learning (also referred to as \Variational Expectation-Expectation"). CisMod-

ule uses a sampling strategy akin to that used by the originalGibbs sampler [79], but

uses a hierarchical model of motifs to learn motifs \modules".

While the above probabilistic algorithms do not generally use a set of negative exam-

ples, electing instead to use model motifs that are over-represented given a background

distribution, others attempt to �nd motifs that can be used to discriminate between a

positive and negative sets of sequences. Approaches here include neural networks [118],

discriminative scoring function that maximize the log-odds of the motif appearing in the

positive and negative samples [103] , and learning informative priors on motif position
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based on nucleotide content [75, 76]

Various approaches have been suggested to deal with �nding the proper number and

width of motifs. Generally, some sort of sampling procedureor expert knowledge is ap-

plied so as to optimize the cost function with respect to motif width, and heuristics, such

as thresholds, statistics, model selection approaches, orthe masking procedure introduced

by MEME, are used to determine the number of motifs.

2.6.3 Motif Detection in Alternative Splicing Data

Unfortunately, most motif detection algorithms are not directly applicable for splicing

factors motif �nding. First, some of the activation signal is found within the coding exon,

so evolutionary conservation of the genomic sequence cannot be relied upon. Additionally,

introns tend to exhibit high conservation in the proximity of exons, quickly dropping

o� as the distance from the nearest exon increases [120]. This complicates the use of

phylogenetic footprinting in intronic regions as well. Theuse of microarray co-expression

has been impossible until recently, though there are now several microarray splicing data

sets. [21, 60, 85, 107].

Splicing factors motifs have been extensively studied using SELEX (Section 2.6.1).

While responsible for the characterization of many proteinspeci�c ESE sequences, many

of these sequences were found to be highly degenerate and abundant in intronic sequences

[122]. Additionally, SELEX is limited to detection of enhancers, without accounting for

silencers.

Computational approaches have been used to detect potential exonic splicing en-

hancers (ESEs) by searching for short sequences that are over expressed in exons. All

possiblen-mers can be compared between alternative and constitutiveexons, exons with

strong and weak splice sites, or exons and pseudoexons (intronic regions 
anked by se-

quences matching the splice sites) [33, 122]. These methodshave led to hundreds of

predicted n-mers that function as splicing enhancers or silencers, many of which have
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been experimentally veri�ed. Evolution conservation has led to limited success as well,

by con�ning the analysis to exons found in the untranslated regions (and hence non-

coding exons) of genes [55]. Statistical methods have also been successfully applied to

intronic sequences in alternative splicing data to reveal tissue speci�c motifs [15, 32].
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Microarray Analysis and Inference

of Exon Inclusion Levels

This chapter presents approaches for inferring relative exon inclusion levels based on

microarray data. First, preprocessing of microarray data to ensure high data quality is

discussed, including an algorithm for the removal of spatial dependent noise. The second

part of the chapter focuses on algorithms for the inference of alternative splicing levels

from microarray measurements.

3.1 Spatial Trend Removal

Microarray measurements are subject to a number of experimental artifacts. Global

normalization techniques [51, 96] have been used to make measurements from di�erent

slides comparable. These methods ignore the position of a probe on an array when

normalizing the signal. However, hybridization and scanning conditions can vary across a

single slide resulting in smoothly varying intensity trends. Often, background subtraction

is used to detect trends that result from non-speci�c binding of transcripts to the array

substrate (the so-called \background intensity" around each probe). This is done based

on the assumption that the same factors a�ecting the probes'intensities and leading

42
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to the spatial trend are also a�ecting the microarray substrate. Since no signal should

be detected where no probes are to be found, some systematic noise would be removed

by subtracting the background intensity from the probes' values. However, on modern

substrates designed to avoid non speci�c binding, these trends do not appear in the

background, and therefore no trend is observed there.

Several methods have been introduced that estimate the trend acting on a single

probe using the \foreground" intensities of nearby probes.These methods are based on

the assumption that the spatial trend manifests as a local bias in intensity measurements

that can be estimated from neighbouring (or nearby) probes.Workman et al. (2002)

estimate the spatial trend with a Gaussian kernel �lter, which uses the weighted mean of

nearby probes as the estimate of the local bias acting on a probe. The estimated trends

are smooth, but are sensitive to high intensity measurements typical of microarray stud-

ies. Trends estimated using the median of neighbouring probes [117] are robust to high

intensity measurements but are discontinuous. Spatial Lowess combines the advantages

of both these approaches using robust local linear regression [23]. These method rely on

random placement of probes on the array, for which no correlation between nearby probe

measurement should be observed.

All of these methods have \window-size" parameters that determine how distance

a�ects the in
uence of a probe on the estimated trend. In general, these window-size

parameters dictate how quickly the estimated spatial trendvaries. Large windows lead to

slowly varying estimates that smooth over quick variationsin the trend. Smaller windows

track these variations but are prone to sampling noise. The best choice of window-size

parameters balance errors due to quickly varying trends andundersampling.

A spatial detrending method, called Spatial Trend Removal (STR), is presented here,

which combines the advantages of kernel �ltering and median�ltering and automatically

selects the optimal window-size parameters.
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3.1.1 Algorithm

STR was developed based on analysis of 110 two-color microarray experiments from

Zhang et al. (2004). These arrays are Agilent 22K custom arrays similarto those used

to generate data set MM22K (see Section 3.2). Consistent with other studies [28], it

was observed that the log intensities had heavy-tailed distribution with a non-negligible

proportion of the spots having high intensity. These spots add variance to the estimate

of the spatial trend, and ignoring them improves the accuracy of the estimate. However,

selecting these spots by thresholding intensity may removeall spots in a given high-

intensity trend. Instead, these spots are selected based onan initial trend estimate

derived from median �ltering the image. Spots with high intensity compared to this

estimate are 
agged and not used in the second phase of STR.

The second phase of the algorithm uses a modi�ed Gaussian kernel �lter to estimate

a smooth function representing the trend in the data. The detrended dataset is set to be

equal to the element-wise di�erence of the original datasetand this estimate. Note that

the estimated trend acts on all spots, including those 
agged in the �rst stage.

The modi�ed Gaussian kernel has a single parameter that is optimized to best repro-

duce the observed trend. This parameter is �t using the assumption that nearby spots

should not have correlated expression. This assumption holds, for example, in microar-

ray formats where the spot location is randomized and those where replicate spots are

well-separated on the array. Under the above assumption, inthe absence of a spatial

trend, the best reconstruction of a spot's intensity is the overall mean of the data. In

the presence of a trend, this trend is a better estimate of a spot's intensity. Therefore,

the kernel parameter is �tted by minimizing the di�erence between the estimate of the

trend produced by the kernel and the observed spot intensities.
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3.1.2 Optimizing the Gaussian Kernel Filter

Given the assumptions above, the error function is given by the mean squared error

between the �ltered dataset and the original dataset, as given by

E k(� ) =
1

N k

X

i j

h
X k

i;j � X̂ k
i;j (� )

i 2
; (3.1)

whereN k is the number of non-outlier spots on thekth array and X k
i;j is the kth array's

log-intensity value for the probe located at location (i; j ). X̂ k
i;j (� ) is the estimated log

intensity value for location (i; j ), corresponding to the estimated trend, and is given by

X̂ k
i;j (� ) =

P

m

P

n
Wm;n (� )M k

i + m;j + nX k
i + m;j + n

P

m

P

n
Wm;n (� )M k

i + m;j + n
(3.2)

Wm;n (� ) = e� m 2 + n 2

� 2 W0;0 = 0: (3.3)

where M k
i;j represents the result from the �rst phase (median �lter phase) and assumes

the value 0 if the spot at location (i; j ) is 
agged as an outlier, and 1 otherwise. The

�ltering window, Wm;n (� ) is indexed such that index (0; 0) is at the center of the window.

In Equation (3.3), � controls the e�ective window size: a smaller� results in a

smaller e�ective window. E k(� ) is continuously di�erentiable as a function of� , and can

be optimized using a line-search procedure. A two-dimensional Fast Fourier Transform

[22] is used to e�ciently compute the numerator and the denominator in Equation (3.2)

as well as the derivative ofE k(� ).

STR can be used in online or global modes. In online mode, eachslide is optimized

individually to the optimum E k(� ). In global mode, a single� parameter is found that

optimizes E(� ) =
P

k E k(� ). The online mode is typically faster and can be run in

parallel or added to a slide processing pipeline. The globalmode provides more stable

estimates of� , but can only be applied once all hybridizations and slide quanti�cations

have been completed.

Typically, microarray slide quality can be evaluated by comparing dye-swaps. In this

setup, each sample is hybridized to two arrays, once in the green channel, and once in
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the red channel. The two measurements can then be compared toestimate the signal

and noise properties of the experiment, where a high correlation between the dye-swaps

indicates high signal �delity. As seen in Figure 3.1, however, using dye-swap correlation

as the cost function may lead to disastrous results. Small window size parameters lead

to high correlation, but this improvement is due to introduced artifacts (\rings" around

high expressing probes) rather than improved signal �delity.

Median �lter parameters:

The output of the algorithm is less sensitive to the median �ltering parameters than to

the Gaussian �lter parameters. A median �lter window size of7� 7 works well in general.

STR 
ags the N % of spots that have the greatest di�erence between the median �ltered

estimated trend and the original data. By default,N is set by estimating the proportion

of spots with intensities signi�cantly di�erent from the median �ltered trend using a

robust standard deviation estimate [45]. To do that, the median �lter is applied to

the original microarray, X , data, and subtracting it from the median �ltered data, ~X .

Probe measurements that are more than 3� r away from 0 are marked as outliers, where

� r = 1:483 mediani;j jX i;j � ~X i;j j is the adjusted median absolute error.

3.1.3 Experimental Results

Both the global and online versions of STR were applied to the110 microarray exper-

iments in Zhang et al. (2004). Figure 3.2a-b show a sample array before and after

applying STR. STR removes the correlation between nearby probes (Figure 3.2c) that

is characteristic of spatial trends [93]. To demonstrate that removing the spatial trend

improves the quality of the signal, dye-swap replicates were compared before and after

STR (Figure 3.2d) using the Pearson correlation coe�cient (r ). STR improves r in 97

out of 98 experiments with an initialr > 0:7. Twelve of the 110 experiments withr < 0:7

were excluded from the analysis because one or both of the replicates was primarily noise.
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Figure 3.1: E�ect of varying window size parameter on correlation. (a) The

same slide shown in Figure 3.2 is shown here after �ltering with a small window size

(� = 1) and no outlier removal. Each probe measuring high intensity (dark spots) is

surrounded by probes with low intensities (white spots) (b)The e�ect of varying the

window size parameter,� , on the intra-slide correlation (i.e. between probes on the same

slide) of Gaussian kernel �ltering (i.e. global STR with no outlier removal). Too small

a window creates ringing artifacts, resulting in negative correlation between adjacent

probes, while too large a window does not remove the spatial trend su�ciently, resulting

in positive correlation between adjacent probes. (c) The e�ect of varying the window size

parameter on cross-slide correlation (i.e. correlation between dye-swaps). Interestingly,

smaller window sizes improve correlation between replicates more than larger window

size parameters. This is most likely due to similar trends induced in the replicates, such

as rings, as seen from the induced negative intra-slide correlation.
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Figure 3.2: Spatial trend removal analysis (a) A gray level image of a sample mi-

croarray data with a discernible spatial trend. The position of each pixel in the image

represents the position of a probe on the array, and the gray level intensity represents the

log-intensity measured at that probe. (b) The data from (a) after STR has been applied.

(c) The Pearson correlation coe�cient (r ) between probe intensities as a function of the

distance between probes on the array. (d) The improvement inr due to STR. The r be-

tween 
uor-reversals is computed before and after STR is applied to the slides, denoted

rpre and rpost respectively. The dotted line marks the no improvement threshold, and the

dashed line marks maximum theoretical improvement. Twelveof the 110 experiments

with rpre < 0:7 are not shown.
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Both global and online versions of STR were able to raiser on average 18% closer to the

theoretical maximum of one. However, STR did not improve correlations between slides

that are not replicates (data not shown), suggesting that the correlation improvements

are not due to arbitrary transformations. The analysis demonstrates that STR removes

spatial trends and simultaneously improves speci�city andreproducibility of microarray

data.

STR was evaluated against median �ltering and against Gaussian kernel �ltering.

Typically window size parameters are chosen by hand. However, these parameters were

�t by optimization to ensure meaningful comparison. Due to the small number of possible

values, the window-size parameters for median �ltering canbe easily set by discrete

search. On the other hand, choosing among the continuum of window sizes for Gaussian

kernel �ltering is more di�cult. As such, the cost function i n Equation 3.1 was used to

set � for the Gaussian kernel �ltering. This is possible because the global version of STR

without outlier removal (i.e. M k
(i;j ) = 1; 8i; j; k ) is identical to Gaussian kernel �ltering.

The performance of the algorithm was evaluated using two measures: the correlation

between replicates (cross-slide correlation), and correlation between adjacent spots on

the slide (intra-slide correlation). Increasing cross-slide correlation while decreasing intra-

slide correlation demonstrates that signal is recovered without introducing new spatial

trends. The analysis was restricted to the 98 experiments with initial cross-slide r-value

of at least 0.7.

Figure 3.3 demonstrates that STR outperforms both median and Gaussian kernel

detrending. For median �ltering, it was found that increasing the window size beyond

3x3, consistently decreased the cross-slide correlation (see also [117]). Compared to 3x3

median �ltering, STR improves cross-slide correlation 83 out of 98 times. Most of the

di�erence in performance appears in experiments that have high initial cross-slide cor-

relations. In these cases, median �ltering tends to reduce the cross-slide correlations

whereas STR increases it. The performance gain over Gaussian kernel �ltering is more
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subtle. While the improvement in cross-slide correlation is comparable, STR has a sig-

ni�cantly larger reduction in intra-slide correlation. Th is di�erence is likely due to the

fact that including outliers when estimating the spatial trend tends to correlate the de-

trended intensity of spots adjacent to the outliers due to the \ring" e�ect (Figure 3.1).

Although online STR improves the cross-slide correlation more than global STR, global

STR signi�cantly reduces intra-slide correlation over online STR.

It should be noted that the Gaussian kernel parameter,� could be expanded to a

full covariance matrix with three parameters (� i , � j , and correlation coe�cient, rho).

However, no improvement was observed by using this approach, and the learning times

increased by a large factor.

3.2 Alternative Splicing Microarray Platform

To survey AS levels on a large scale, a Qun Pan of the Blencowe lab at University

of Toronto designed a custom DNA microarray [85]. The AS events were primarily se-

lected on the basis of having strong EST/cDNA-based support1 (i.e. multiple independent

ESTs/cDNAs sequences revealed skipping or inclusion of each alternative exon) [82, 85].

The microarray contained multiple probes for each AS event,allowing for redundancy

in the measurements and enabling quantitative analysis. Each event is analyzed using six

probes, as shown in Figure 3.5. Three body probes are used to monitor each of the three

exons involved in the AS event - the constitutive (always included) exons, C1 and C2,

and the alternative exon, A. Two junction probes are used to monitor the two junctions

formed by the inclusion of the alternative exon and one junction probe monitors the

junction formed by the exclusion of the alternative exon andjoining of the constitutive

exons.

As the technology of microarray developed and improved, an increasing number of

1EST data, or Expressed Sequence Tags are derived by sequencing reverse-transcribed mRNA and
give indication of the transcripts present in various tissues and cells
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Figure 3.3: Evaluation of performance of spatial detrending methods. Median

�ltering is outperformed by Gaussian kernel based �lteringmethods, and in fact reduces

average cross-slide correlation and introduces negative intra-slide correlation. Online

STR increases average cross-slide correlation and reducesintra-slide correlation when

compared to Gaussian kernel �ltering (the improvement to intra-slide r-value is signi�-

cant). Global STR does not improve cross-slide correlationas much as online STR, but

has the best intra-slide correlation removal (nearly 0 intra-slide correlation.
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Figure 3.4: Comparison of cross-slide correlation improvements of spa tial de-

trending methods. The three Gaussian kernel-based �ltering methods perform com-

parably and signi�cantly better than 3x3 median. Global andonline STR have better

improvement in the bad slides (slides with lower cross-slide correlation between repli-

cates) compared to Gaussian Kernel Filtering, and perform comparably on the good

slides.
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probes could be placed on the array. All the designs used Agilent custom array technology.

The available platforms and data sets are

� MM22k - Mus musculus(house mouse) array with approximately 22,000 probes.

This is the original data set, and includes analysis of 10 mouse tissues. This array

targets 3,126 events.

� MM44k - Similar to the above, but contains approximately 44,000 probes. This

array design was used to generate a data set of 27 mouse tissues. This array targets

3,707 exon skipping events (other probes are included on thearray, which account

for the low number)

� HS244k - The most recent data set contains analysis of 5,782 events in 54 human

tissues.

3.3 GenASAP { a Generative Model for Alternative

Splicing Array Platform

The objective is to infer the relative levels of the two isoforms contributing to the array

measurements. Two generative models that can be used to accomplish this are presented

here. The models are similar in structure, but use di�erent noise models. The �rst,

GenASAPv1, uses variational EM (Section 2.3.3) with analytical updates. It is relatively

fast, and as shown in Section 3.4.3, provides good predictions for the original mouse

dataset. The second algorithm, GenASAPv2, employs sampling in its inference step,

and while slower, provides signi�cantly better predictions.

3.3.1 GenASAPv1 Model Description

It is assumed that there is a linear relationship between theintensity measured by the

probe and the abundance of target mRNA containing the probe binding sequences.
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Figure 3.5: Alternative splicing array probe design. Each AS event on the array

is analyzed using six probes, as shown by the black lines. Three body probes monitor

the three exons involved in the event, two junction probes monitor the inclusion isoform,

and one junction probe monitors the exclusion isoform.

Therefore, the intensity measured at each probe is modeled as a linear combination

of the abundance of the inclusion and exclusion isoforms, plus noise. This can be written

as

x i;k = � k;incsi; inc + � k;exsi; ex + � i;k ; (3.4)

where x i;k is the measured intensity at thekth probe (one of six real-valued measure-

ments) for the i th event from the microarray,si; inc and si; ex are the unknown real-value

abundances of the mRNA inclusion and exclusion isoforms respectively, � k;inc and � k;ex

are the estimated a�nity between the two mRNA isoforms and probe k, and � i;k is the

additive noise component for probek at event i .

To accurately infer the relative levels of the mRNA isoforms, it is crucial to have an ap-

propriate noise model. Microarray noise has been previously shown to be scale-dependent

[95]. Data preprocessing techniques, such as Variance Stabilizing Normalization [30, 51],

reduce this e�ect by transforming the intensity data to a logor sinh� 1 domain2. How-

ever, for the model's linear isoform combination assumption to be valid, the microarray

2sinh� 1 is a log-like function that is de�ned for negative values andis approximately linear near the
origin
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measurements must be maintained in the intensity domain. Additionally, outlying mea-

surements resulting from faulty probes, aberrations on thearray surface, non-speci�c

binding, and other experimentally introduced errors are accounted for using an outlier

model. After incorporating scale-dependent noise and outlying measurements, the model

becomes

x i;k =

8
>><

>>:

� i;k oi;k = 0

r i (
P

t � k;t si;t + � k) oi;k = 1

=

 

r i (
X

t

� k;t si;t + � k)

! 1� oi;k

(� i;k )oi;k ;

(3.5)

where the subscriptt indexes isoforms (inc and ex in Equation (3.4), the scale factor r i

is a real number accounting for noise levels at the measured intensity, � i;k is a pure noise

component representing an outlying measurement, and the binary indicator, oi;k 2 f 0; 1g

identi�es a probe measurement as being an outlier (oi;k = 1) or valid ( oi;k = 0).

Under the assumption of independent, zero-mean, normally distributed noise, the

conditional probability of the data given the isoform levels, scale, and outlier indicators,

can be written as

P(xjs; r; o) =
Y

i

Y

k

N (x i;k ; r i

X

t

� k;t si;t ; r 2
i 	 k)1� oi;k N (x i;k ; Ek ; Vk)oi;k ; (3.6)

where the variance of the noise at probe typek is given by 	 k , and the mean and variance

of the outlier model are given byEi and Vi respectively.

Due to the biological interpretation of the variables and parameters in the model,

there are certain positivity constraints that must be met. First, the isoform abundances,

s, may not take negative values. Also, the hybridization coe�cients, � , may not assume

negative values, since the presence of an isoform should notreduce the measured intensity.

The constraint on the isoform abundances is enforced by setting its prior to a truncated

Gaussian distribution, as given by

P(si;t ) = 2 N (si;t ; 0; 1)[si;t � 0]; (3.7)
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Figure 3.6: Generative model of alternative splicing levels from the mi croarray

data. The six observed microarray intensities are modelled as a linear combination of

the two isoform levels,s1 and s2, a�ected by scale dependent noise,r . The model allows

observations to be marked as outliers, as indicated by the binary indicator variables

f oC1; oC2; oA ; oC1:A ; oA:C2; oC1:C2g, and be associated with the outlier process.
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where [�] is the indicator function such that [s � 0] = 1 if si;t � 0, and [si;t � 0] = 0

otherwise. The truncated Gaussian distribution enables much of the analysis to be carried

out analytically, while satisfying the constraints. Othernon-negative prior distributions

may be used, however, such as the gamma distribution.

To completely specify the joint probability, priors over the remaining noise processes,

o and r need to be speci�ed. The prior for the indicator variableo is parameterized

as P(oi;k = 1) = 
 k , where 
 k is a learned parameter re
ecting the probability of each

type of probe to be an outliera priori . For computational e�ciency, r is selected from a

discrete set of possible values,r i 2 f R1; R2; : : : ; RCg with uniform a priori probability:

P(r i = Rk) = 1 =C.

3.3.2 Inferring Isoform Levels

This section presents a strategy for jointly learning the parameters of the model while

inferring the relative isoform levels. As previously discussed, the parameters of the model

are shared among all AS events on the arrays, and are comprised of the noise variances,

	, outlier probabilities, 
 , the set of possible values for the scale factor,f R1; R2; : : : ; RCg,

the outlier model's mean and variance,Ek and Vk , and the hybridization pro�les, � . Ad-

ditionally, the generative model contains observed and hidden (latent) variables that are

unique for each AS event studied. The observed variables arethe microarray measure-

ments, x, and the latent variables include the isoform levels,s, outlier indicators, o, and

the scale factor,r .

Variational learning in GenASAPv1

To jointly estimate the isoforms levels and the model's parameters, variational EM is

used. Under the mean �eld approximation, the approximate distribution is chosen such

that all variables are independent [78]. This type of distribution is often easily modelled

and computed but sacri�ces knowledge of the structure inherent in the model. In GenAS-
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APv1, we make a partial mean �eld approximation that retainsmuch of the structure of

the true posterior. The approximate posterior is given by

P(si ; r i ; oi jx i ) = P(r i jx i )P(oi jx i ; r i )P(si jx i ; r i ; oi )

� Q(r i )Q(oi jr i )
Y

t

Q(si;t jr i ; oi );
(3.8)

Note that the Q distribution depends on the observed data,x, indirectly through the

variational parameters (see below).Q(r i = Rk) = � i;k and Q(oi = Ojr i ) = ! i;r;O are

discrete distributions, and together represent the responsibility of each of the mixture

components. Q(si;t jr i ; oi ) is parameterized asQ(si;t jr i ; oi ) / N (si;t ; � i;r;o;t ; � i;r;o;t )[si;t �

0]. Thus, the a posteriori interdependence withins is disregarded, but the dependence

of s on r and o is retained in the approximation. Finally, Q(oi jr i ) is constrained to those

con�gurations where at most two of the probes are marked as outliers. This is done for

two reasons. First, it is possible to model two probes exactly using two isoforms, and so

we would expect the quality of the predictions to drop as moreprobes are allowed to be

marked as outliers. Second, the model is forced to assign a low a priori probability to

the outlier model (typical values are less than 5%). Therefore, events where more than

two probes are outliers are expected to be extremely rare, and exploring those settings

would take a great deal of computational power that would be largely unnecessary.

As discussed in Section 2.3.3, the free energy of the model isgiven by

F (P; Q) =
Z

s

X

o

X

r

Q(s; o; r) log
�

P(s; o; r; x)
Q(s; o; r)

�
; (3.9)

and GenASAPv1 proceeds as shown in Box 3.1. The minimizations in step 2 and 3 can

be carried out by setting partial derivatives of the free energy to zero, while enforcing the

constraint that the Q distribution must be positive and integrate to 1. The variational

updates for steps 2 and 3 are available in Appendix A. After convergence, an estimation of

the optimal parameters for the model and an approximation ofthe posterior distribution

is available. The setting ofsi ; r i , and oi that maximizes Q(si ; r i ; oi ) approximates the
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1. Initialize model parameters. The parameters may be initialized randomly

or to a prede�ned value. While setting the parameters to meaningful

values may speed up convergence, random initialization mayhelp if the

model contains multiple modes. For GenASAP, the initial values of the

parameters were found to have little a�ect on the results.

2. E-step. MinimizeF (P; Q) with respect to the variational parameters of the

Q distribution, � , � , Q(ojr ), and Q(r ), while keeping the model parameters

�xed. Detailed update equations are available in Appendix A.

3. M-step. Minimize F (P; Q) with respect to the model parameters,� , 	,

and f � 1; � 2; : : : ; � Cg, while keeping the variational parameters �xed. De-

tailed update equations are available in Appendix A.

4. Repeat steps 2 and 3 until convergence.

Box 3.1: GenASAPv1 algorithm.
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maximum a posteriori (MAP) estimate of the outlier indicator, scaling factor, and most

usefully, the isoform levels, which are used as estimates ofthe mRNA isoform abundances.

3.3.3 GenASAPv2 Model Description

To carry out the variational EM algorithm analytically in GenASAPv1, the exponential

family distributions had to be used. Here it is shown how GenASAPv2 uses sampling to

perform inference in the model given a more accurate noise model that does not allow for

analytical analysis. Furthermore, the model's parametersare assigned prior distributions

and are included in the sampling phase as well.

Once again, the expression measured at a probe is assumed to be proportional to a

linear combination of the abundances of the two isoforms, but now the noise is added after

a transformation to the sinh� 1 domain. To simplify the notation, the sinh� 1 transformed

microarray data are assigned to ~x = sinh � 1(x). With the possible exception of the MM22k

data set, enough experimental conditions are available to model the hybridization of each

probe individually:

~x i;j;k = sinh � 1 �
� i;k; incsi;j; inc + � i;k; exsi;j; ex + K b

�
+ � i;j;k ; (3.10)

where i indexes the event as before, the new subscriptj indexes the experimental con-

dition, k once again indexes the probes (A, C1, etc), and K b is a global background

constant. An exponential prior is placed on the isoform abundances,s, and a Gamma

prior on the hybridization pro�les, � , given by

P(si;j;t ) = e� si;j;t ; (3.11)

P(� i;k;t ) =
� � k;t � 1

i;k;t e� � i;j;t =� k;t

�( � k;t )� k
k;t

(3.12)

where t is the type of isoform (inclusion or exclusion). The global background constant,

K b, and the noise variance, 	, are treated as two hyperparameters of the model, and

can be either learned or set by hand. Experiments show that byusing a more accurate
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noise model and event speci�c hybridization pro�les, the outlier model is not necessary.

Given a white Gaussian noise model in the sinh� 1 domain, the complete probability of

the model is given by

P(~x; s; � j	 ; K b) =
Y

i

Y

t

� Y

j

e� si;j;t

�� Y

k

� � k;t � 1
i;k;t e� � i;j;t =� k;t

�( � k;t )� k
k;t

�

Y

i

Y

j

Y

k

1p
2� 	

e�

�
~x i;j;k � sinh � 1(

P
t � i;k;t si;j;t + K b)

� 2

2	

(3.13)

3.3.4 MCMC Sampling

Inference in GenASAPv2 is carried using Metropolis-Hastings sampling (Section 2.2.3)

for the latent variables. The prior on the hybridization pro�les re
ects a belief about how

isoforms should bind to the probes,i.e. the inclusion isoform hybridizes strongly tof C1,

C2, A, C1:A, A:C2g, and weakly to f C1:C2g, while the exclusion isoform bind strongly

to f C1, C2, C1:C2g and weakly to f A, C1:A, A:C2g.

The sampling procedure exploits conditional independencein the GenASAP model.

Given the hybridization pro�les, f � g, the isoform levels in each tissue are independent

of their levels in other tissues. The sampling was thereforeseparated into two phases.

In the �rst phase, the f � g variables are kept constant and thef sg variables are sampled

by iterating over the subscriptsi; j (tissues and events) and jointly over the subscriptt

(isoforms). The proposed states are drawn from isometric Gaussian distributions with

variance � 2 = 0:1. In the second phase, the isoforms levels are kept constantand the

hybridization pro�les, f � g, are sampled iteratively over subscripti (events) and jointly

over subscriptsk; t (probes and isoforms). Again, the proposed states are drawnfrom an

isometric Gaussian distribution with variance� 2 = 1
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3.4 Experimental Results

The results presented for GenASAPv1 were obtained using twostages of learning. In the

�rst stage, the hybridization pro�le, � , is learned on a subset of the data for which the

both constitutive exon body probes, C1 and C2, measured higher expression than the

90th percentile of a negative set of probes placed on the array (i.e. probes that are not

targeting any known mRNA sequence). In the second step,� is kept �xed, an isotropic

noise constraint is introduced (	 =  I ), and the the entire data set is used during the

variational EM run. The constraint on the noise is introduced to prevent the model from

using only a subset of the six probes for making the �nal set ofpredictions. GenASAPv2

was run for 200,000 iterations during the burn-in phase, followed by the collection of 200

samples every 200 iterations.

Since it is the relative amount of the isoforms that is of mostinterest, we use the

inferred distribution of the isoform abundances to obtain an estimate for the relative

levels of AS isoforms. We refer to the isoforms that contain and skip the alternative exon

as the inclusion and exclusion isoform respectively. For GenASAPv1, the percent of the

included alternatively spliced isoform is given by %ASinc1 = ŝinc
ŝinc + ŝex

, where ŝinc and ŝex

are the MAP estimation for the inclusion and exclusion isoform respectively, while for

GenASAPv2 the samples are used directly to estimate %ASinc2 = E[ sinc
sinc + sex

].

3.4.1 Additional Approaches to Quantitative Estimation of AS

Levels

The results obtained by GenASAP shall be compared to predictions made directly us-

ing the normalized probe values. These are common approaches used while analyzing

alternative splicing arrays, in particular, for analysis of A�metrix exon arrays [1].
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Body Probe Ratio (BPR)

PBR uses the measurements at the three body probes, C1, C2, and A:

%ASinc =
xA

(xC1 + xC2 )=2
(3.14)

Junction Probe Ratio (JBR)

JPR uses the measurements at the three junction probes, C1:A, A:C2, and C1:C2:

%ASinc =
(xC1 :A + xA:C2 )=2

(xC1 :A + xA:C2 )=2 + xC1 :C2

(3.15)

Junction and Body Probe Ratio (JBPR)

JBPR uses the measurements at the three junction probes, C1:A, A:C2, and C1:C2 in

combination with the inclusion body probe, A:

%ASinc =
(xC1 :A + xA:C2 + xA )=3

(xC1 :A + xA:C2 + xA )=3 + xC1 :C2

(3.16)

3.4.2 RT-PCR validation

The results are compared to RT-PCR assays covering a wide range of percent exclusion

values and expression for the various datasets. RT-PCR assays are often used as a semi-

quantitative method to validate microarray data. Figure 3.4.2 shows a sample RT-PCR

assay carried out for an AS event across ten mouse tissues. Primer pairs were designed

to have matching Tm (59� C) and were targeted to constant exon sequences 
anking each

alternative exon. Gel images were recorded using a Syngene gel documentation system

and quanti�ed with Gene Snap software. Each column producedtwo measurements

corresponding to the two isoforms, and the RT-PCR-measuredAS levels were calculated

as I ex
I ex + I inc

, where I ex and I inc are the measured intensity of the exclusion and inclusion

isoform, respectively.
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K   Li   I    Lu Sa M  Sp H   B   T

28   21   30   33   29   34   41   32   60   33

24   21   26   24   30   26   32   15   59   21

Tissue type

RT-PCR

GenASAP

AS event #2962

Figure 3.7: Sample RT-PCR gels for an AS event across the ten mouse tissue s.

Bands of sizes expected for the included and excluded mRNA isoforms are indicated.

The labels above the gels indicate the tissues:K idney, Li ver, I ntestine, Lu ng, Salivary

gland, skeletalM uscle,Spleen, H eart, B rain, and T estis. Below the gel, measurements

for percent exclusion estimated from the RT-PCR and GenASAPare shown.

It is important to note that while generally considered moreaccurate than microarray

analysis, PCR gels are nonetheless semi-quantitative. Other techniques, such as quan-

titative PCR (qPCR), which use 
uorescent molecules instead of radioactive isotopes,

would be more useful for quantitative validation. Unfortunately, these techniques are

also more expensive to carry out on a large scale, and are not available here.

3.4.3 Comparison of Algorithms

Figure 3.8 shows the correlation of all algorithms to RT-PCRmeasurements as a function

of expression cuto�. For each algorithm, the correlation with RT-PCR measurements was

computed after removingP% of the lowest expressing events, where an event's expression

was taken to be the mean of C1 and C2 probes (in the sinh� 1 domain). To generate the

plot, P was varied from 0% to 99%, with all integer values considered. The three data sets

MM22k, MM44k, and HS244k have 280, 341, and 822 RT-PCR measurements available



Chapter 3. Microarray Analysis and Inference of Exon Inclusion Levels 65

for comparison respectively.

It is commonly accepted that microarray measurements have ahigher signal to noise

ratio for higher measurements, and so it is reasonable to expect that as the mean of the

expression of the C1 and C2 probes increases, the alternative splicing predictions' accuracy

would increase as well, as seen in Figure 3.8. Perhaps not surprisingly, GenASAPv1

outperforms all other algorithms, when compared to RT-PCR in data set MM22k, as it

was designed speci�cally to handle this data set. GenASAPv2performs well on MM22k,

and is the top performer for MM44k and HS244k. In the later twodata sets, however,

GenASAPv1 performs considerably worse, exhibiting correlation with RT-PCR that is

lower than all algorithms but BPR, which consistently performs poorly.

Several interesting observations emerge from Figure 3.8.

1. GenASAPv2 consistently performs better than the simple heuristics. This is pro-

nounced in the mouse data sets, and, while more subtle, consistent across all ex-

pression cuto�s in data set HS244k. In addition, GenASAPv2 provides a larger ad-

vantage when evaluating low expression probe sets in the mouse data sets, thereby

allowing the extraction of more information from each experiment as compared to

the simple methods.

2. GenASAPv1 was developed in tandem with analysis of the MM22k data set. An

iterative process of analysis, PCR validation, and model re�nement was in e�ect.

As such, it is possible that the model is biased so as to provide good predictions

on that dataset, which may explain its lower performance on other data sets.

3. In general, events were selected that were deemed \interesting" ( i.e. predicted to

exhibit di�erential splicing between tissues), and as such, the RT-PCR validations

is a biased measure of performance. Nonetheless, these validation are useful given

limited resources.

4. Microarray technology has improved in recent years. Better protocols, scanners,
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Figure 3.8: Alternative Splicing Measurements Comparison to RT-PCR. The

correlation of each of the algorithms to RT-PCR is shown as a function of expression cut-

o�. As expected, measurements' accuracy is improved with microarray probe intensity.

GenASAPv1 outperforms the other algorithms in MM22k, with GenASAPv2 coming in

a close second. GenASAPv2 outperforms the other algorithmsin MM44k and HS244k,

with GenASAPv1 performing poorly on those data sets. BPR is consistently the lowest

performer.
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Table 3.1: Expression percentiles required to achieve high correlati on with RT-

PCR. For each of the three data sets, the expression percentile cuto� required to achieve

0.7, 0.8, and 0.9 Pearson correlation coe�cient with RT-PCRis shown. Lower values

are better, and a dash indicates that that the algorithm is unable to achieve a particular

correlation. In each row, the lowest value is highlighted.

r - value GenASAP

v1

GenASAP

v2

BPR JPR JBPR

MM22k

0.70 78 83 86 84 84

0.80 87 91 91 91 91

0.90 91 91 97 - 92

MM44k

0.70 59 41 90 47 47

0.80 76 51 - 59 65

0.90 92 80 - 80 90

HS244k

0.70 40 0 85 0 0

0.80 74 40 95 50 48

0.90 97 91 - 92 94
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and array fabrication techniques have led to more accurate predictions across all

expression levels. As such, predictions obtained from simple heuristics have im-

proved in accuracy as well, and the bene�t of using the sophisticated GenASAP

algorithms has been reduced.

5. The popular a�ymetrix exon arrays, often used to study alternative splicing pat-

terns, use body probes exclusively [1, 92]. However, it is evident that predictions

based on body probes alone (BPR, yellow line) generally havepoor correlation with

RT-PCR.

The observation in point 1 above is further illustrated by Table 3.1. Acceptable level

of correlation with RT-PCR may range between 0.7 to 0.9, depending on the experiment.

For each data set and algorithm, Table 3.1 shows the percent of data that would have

to be discarded to achieve the desired correlation. It is evident that if GenASAPv2

predictions are used, larger portions of the data may be retained for analysis compared

to the heuristics, with GenASAPv1 allowing even greater portions in MM22k.

3.5 Summary

This chapter introduced the GenASAP algorithm for quantitative prediction of alter-

native splicing levels from microarray data. While the available platform provides six

measurements for each event, targeting two isoforms, the algorithm is not inherently

limited to that framework. Should prior information indicate the presence of additional

isoforms, the array can be designed to include additional probes and the algorithm can be

allowed to explore additional number of isoforms. GenASAPv2, in particular is 
exible

enough to consider a di�erent number of isoforms and probes for each event.

Biologists and engineers are constantly pushing high-throughput technology forward.

With each such step, new analysis techniques are often needed. GenASAP is a product

of the early days of exon and junction arrays. As microarray technology progressed, and
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microarray probe design and fabrication, experimental protocols, and scanning technol-

ogy improved, simple heuristics, such as JPR, that assume simplistic noise models and

no cross hybridization improved in accuracy (Figure 3.8). Naturally, GenASAP bene�ts

from increased data �delity, but where its superiority overJPR and JBPR superlative

when evaluated on the early arrays, its bene�t is marginal onnewer ones.

Microarrays, in general, may soon become obsolete in the fast growing �eld of com-

putational analysis. Next generation sequencing (Section2.5.2) is quickly becoming the

preferred method of high throughput analysis for gene expression and alternative splic-

ing measurement due to its improved accuracy. In addition, since no probe design is

required, next generation sequencing facilitates extracting information about novel tran-

scripts, leading to a more complete picture of molecular biology.

From its conception in the early days of microarray exon analysis, GenASAP has

enabled critical analysis of global alternative splicing properties in mammals. Its use

was prominent in studies revealing global trends of alternative splicing [85], nonsense-

mediated decay [83], global regulation of alternative splicig [32], and more [19, 54].



Chapter 4

Bayesian Motif Detection with

E�cient MCMC Exploration

The microarray analysis techniques discussed in Chapter 3 are useful for revealing genome-

wide patterns of alternative splicing. In this chapter, thepredicted alternative splicing

levels are used to study regulation of alternative splicingby �nding sets of splicing events

that exhibit increased exon inclusion or skipping in similar conditions or tissues. Similar

to the concept of co-regulation of gene expression, which refers to genes expressed in

similar conditions or tissues, these exons will be said to beco-spliced. A set of co-spliced

genes de�ne agroup, and given a large set of predicted inclusion levels, many groups may

be de�ned.

This chapter presents a novel motif detection algorithm that uses e�cient MCMC ex-

ploration to sample from the exact posterior in a Bayesian generative model. The model,

dubbed GenBITES (Generative Model for Binding Sites) has been further extended to

explicitly model positive and negative examples reminiscent of discriminative analysis.

The model can, in fact, analyze multiple groups simultaneously to �nd unique sets of

motifs that correlate with each of the groups.

Previous approaches to motif �nding are covered in detail inSection 2.6.2. In general,

70
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the task consists of detecting short sequence elements thatappear \unusually" often

within a group of (much) longer sequences. For example, given the promoter regions of

several genes that are believed to be coregulated, motif �nding algorithms attempt to

�nd similar sequence elements that appear in all (or most) ofthe promoter regions.

4.1 GenBITES: A Generative model for Binding Sites

First, a description of the model and algorithm using only a single group de�nition ( i.e.

only positive examples) is provided. The model is extended to handle multiple groups in

Section 4.3.

Let f Si g; i = 1 : : : I be a set of sequences in which a set of motifs are over-represented

compared to their expected representation under the background distribution. Sequence

Si , of length L i , is comprised of zero or more non-overlapping motifs embedded within the

background sequence. The background distribution should capture overall sequence prop-

erties such as the promoter region when searching for transcription factors and codons

when searching for exonic splicing enhancers. The number ofdistinct motifs, M , may be

�xed by the user or inferred from the data using a prior distribution.

The motifs themselves are represented by position weight matrices (PWMs). As

discussed in Section 2.6, a PWM is a matrix with four rows andWm columns, whereWm

is the width of motif m. The widths of the motifs searched for by the model is governed

by a prior distribution over W. Ti;m is the position of motif m in sequencei . The �rst

nucleotide in the sequence has the index 1, and soTi;m = 0 is used to indicate that

motif m does not occur in sequencei . The probability of including a set ofM motifs in

sequencei at positions Ti = f Ti;m g is

P(Ti jW) =

8
>>><

>>>:

1

D(W; L i ; Ti )

MQ

m=1

 [Ti;m > 0]

m (1 � 
 m )[Ti;m =0] if no overlap

0 otherwise

(4.1)
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where [�] is the indicator function such that [T = 0] = 1 if T = 0, and 0 otherwise.

The function D computes the number of valid con�gurations for a given set ofmotifs

occurring in a sequence of lengthL i and is given byD(W; L i ; Ti ) =
(L �

i + M �
i )!

L �
i !

, where

L �
i = L i �

P M
m=1 W [Ti;m > 0]

m is the number of nucleotides not covered by motifs, and

M �
i =

P M
m=1 [Ti;m > 0]. The motif placement probability assumes that the sequences are

long enough that the probability of placing more motifs thanthe sequence can hold is

zero or negligible.

In this Bayesian method, the values of the PWM parameters or motif occurrence

probabilities are not estimated by a single value. Instead,their posterior distribution are

found, which helps avoid over�tting. This requires de�ning prior distributions for these

parameters. The prior for the probability that motif m occurs in a sequence,
 m , is the

conjugate Beta prior:

P(
 ) =
�( a + b)
�( a)�( b)


 a� 1(1 � 
 )b� 1 (4.2)

Similarly, the conjugate Dirichlet prior is placed over each column of the PWM:

P(� m ) =
WmY

w=1

�(4 � )
�( � )4

4Y

n=1

� � � 1
m;w;n (4.3)

where� m;w;n is the probability of observing nucleotiden at position w in motif m, and � is

the Dirichlet prior parameter. Since there is no reason to assume that motifs will exhibit

a preference for one nucleotide over the others, only one parameter is used to describe

the Dirichlet prior. Furthermore, we are usually interested in well-de�ned motifs, where

most of the probability mass is placed on one or two nucleotides at each position, so�

is generally set to a value much less than 1.

The sequences are assumed to be generated from the motifs andthe background

model. Any background model can be used, as long as it provides the position-speci�c

probabilities needed here. A 3rd order Markov chain trained by maximum likelihood

was found to be generally appropriate1. The probability of sequencei given the other

1Ideally, the Markov chain transition probabilities should be learned from sequences that share the
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variables is

P(Si j�; T; B) = B(Si ; Ti )
MY

m=1
s.t. Ti;m > 0

WmY

w=1

� m;w; (Si;T i;m + w � 1 ) (4.4)

whereB(Si ; Ti ) =
Q L i

l=1

8
><

>:

1 if 9 Ti;m > 0jTi;m � l < T i;m + Wm

P(Si;l jSi;l � 1; Si;l � 2; Si;l � 3) otherwise

When Si;l � j is unde�ned, (i.e. the �rst, second, or third positions in the sequence), that

value is summed over with a uniform prior.

4.2 MCMC Sampling

There are three classes of variables to sample: the number ofmotifs, M , the widths of

the motifs, W, and the positions of the motifs in the sequences,T. Each variable class is

sampled separately. An outer loop chooses at each iterationwhich variable classes should

be sampled with user-de�ned probabilities. To improve the e�ciency of the sampling,

the PWM ( � ) and the motif occurrence probabilities (
 ) are marginalized. The joint

probability of the remaining variables is

P(M; W; T; S) = P(M )
MY

m=1

P(Wm )
�( a + b)
�( a)�( b)

�(
P I

i =1 [Ti;m > 0] + a)�(
P I

i =1 [Ti;m = 0] + b)
�( I + a + b)

�
MY

m=1

WmY

w=1

�(4 � )
�( � )4

Q 4
n=1 �( Nm;w;n + � )

�(
P 4

n=1 Nm;w;n + � )
�

IY

i =1

1

D(W; L i ; Ti )
B(Si ; Ti );

(4.5)

whereNm;w;n is the number of times nucleotiden appears in positionw for motif m.

same background properties as the sequences of interest, but do not contain the motifs. In practice, the
background probabilities can usually be learned directly from the sequences of interest, as the motifs
comprise a negligible fraction of the data.
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4.2.1 Motif Position, T

Motif positions in the sequences are sampled using Gibbs sampling. The conditional

distribution of Ti;m given all other variables is

P(Ti;m jM; W; Ti; nm ; Si ) /
8
>>>>><

>>>>>:

� IP

j =1
j 6= i

[Tj;m > 0] + a
�

B(Si ;Ti )
D (W;L i ;Ti )

Q Wm
w=1

N �
m;w; ( Si ;T i;m + w � 1) + �

P
n N �

m;w;n +4 �
Ti;m > 0

� IP

j =1
j 6= i

[Tj;m = 0] + b
�

B(Si ;Ti )
D (W;L i ;Ti )

Ti;m = 0

(4.6)

where Ti; nm indicates the positions of all the motifs in sequencei except motif m and

N � indicates that the counting variableN does not account forTi;m . Since there are

at most L i � Wm + 2 possible values forTi;m (less if other motifs are already present in

the sequence), exact enumeration of positions is tractableand exact Gibbs sampling is

possible. Using simple transformations and reductions, the entire Gibbs sampling step

can be performed inO(jSi j). An illustrative example of the Gibbs sampling is shown in

Figure 5.1.

4.2.2 Motif Width, W

A common di�culty that generative models face is �nding a local optimum where the

motif model is not aligned to the conserved regions, therebyeither missing a portion

of the conserved binding sites at the beginning of the model,or including super
uous

elements. Escaping these local optima requires that all PWMcolumns be shifted left or

right to make room for additional columns. This can be achieved by including MCMC

moves that can change a motif's width by adding or removing a column at the beginning

or end. The following algorithm samples the motif's width:

1. Choose a motifm randomly and uniformly out of the M motifs in the model.

2. There are four possible moves: add/remove a column at the beginning of the motif,
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1 2 3

4 5 6

7 8 9

10 11 12

Figure 4.1: An illustrative example of Gibbs sampling for motif positio n, T.

1) An empty motif ( i.e. one for whichTi;m = 0 8i ) is initialized with length 6. 2) The

�rst sequence is evaluated, and a position is sampled. The PWM is marginalized, and its

mode is shown below the sequences, where the height of the letter indicates the relative

weight at that position. 3) the second sequence is evaluatednext, but no motif is iden-

ti�ed. 4) The third sequence is evaluated, 5) and so on. 6) As the Gibbs sweep reaches

the �nal sequences, 7) several binding sites have been identi�ed. 8) The �rst iteration

concludes, and 9) the following Gibbs sweep begins. 10), 11)The second iteration eval-

uates the sequences in order, until 12) all sequences are visited. The algorithm repeats

this procedure, extracting samples until enough have been collected.
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or add/remove a column at the end of the motif. Choose among the possible moves

randomly and uniformly.

3. If the action is to add a column, remove all invalid occurrences of the motif (a motif

cannot overlap another motif or cover a non-existent segment of the sequence). This

is a deterministic step that generates an alternate state for the position variables,

Talt
m in a many-to-one mapping. In addition, if the action is to addor remove a

column at the beginning of the motif, the position variables, Talt
m , must be adjusted

appropriately to point to the �rst nucleotide in the motif. W hen removing a column

at the end of the motif, Talt
m = Tm as no adjustments are necessary.

4. Perform a Gibbs sweep over theI sequences by performing a single Gibbs sampling

step for each of the position variables corresponding to motif m. This provides the

proposed state of motif width and positions,f W �
m ; T �

m g. Compute the transition

probability

Q(W �
m ; T �

m jWm ; Tm ) = Q(W �
m ; T �

m jWm ; Talt
m ) =

Y

i

P(T �
i;m jW �

m ; Talt
j>i;m ; T �

j<i;m ; Si )

that corresponds to the probability that the Gibbs sweep from the alternate state

will produce the proposed state.

5. To compute the backward transition probability, Q(Wm ; Tm jW �
m ; T �

m ), repeat step

3 to �nd state Talt �

m . This time, start with the proposed state,T �
m , and perform the

opposite action (i.e. if the action was to add a column at the end of the motif, the

opposite action is to remove that column).

6. Compute the backwards transition probability

Q(Wm ; Tm jW �
m ; T �

m ) =
Y

i

P(Ti;m jTalt �

j>i;m ; Tj<i;m ; Si )

as it would be computed in step 4 by performing a Gibbs sweep for all I sequences.

Note that this time no actual sampling is taking place. Instead, for each sequence,
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the probability of setting the position variable,Ti;m , to its original value from step

1 is computed. The variable must be updated before evaluating the subsequent

sequences to ensure the conditional probabilities are computed correctly.

7. The proposed state,f W �
m ; T �

mg, is accepted using the Metropolis-Hastings accep-

tance probability:

a(W �
m ; T �

m jWm ; Tm ) = min
�

1;
Q(Wm ; Tm jW �

m ; T �
m )P(W �

m ; T �
m ; S)

Q(W �
m ; T �

m jWm ; Tm )P(Wm ; Tm ; S)

�
: (4.7)

4.2.3 Motif Count, M

Just at the motif width is not sampled directly, instead proposing small transitions

whereby a single column is added to or removed from the PWM, the number of mo-

tifs in the model is not sampled directly. Instead, small transitions whereby a single

motif is either added to or removed from the model are proposed. When adding a motif,

a width variable, Wm , and I occurrences of positions,Tm , must be generated for the

new motif. It is possible to naively sample these variables from the prior, or some other

distribution. However, this approach is unlikely to �nd meaningful new motifs and would

result in poor mixing. Using a single Gibbs sweep from a deterministic starting point, as

is done when sampling the motif width, is also possible. However a single Gibbs sweep is

also unlikely to settle towards a meaningful motif. Better results can be obtained with

an adaptation of Jain and Neal's split-and-merge MCMC algorithm [56].

1. Choose to add or remove a motif with probability� a(M ) and � r (M ) = 1 � � a(M )

respectively. The probability of adding a motif is kept at 0.5, except whenM = 0,

in which case� a(0) = 1.

2. (a) To propose adding a motif,

i. Create a motif. Sample its width,W a
m , from the prior, and initialize the

positions, Tm . Generally, it was found that initializing the motif to be
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\empty" works well ( i.e. the motif does not appear in any sequence). It

is also valid to randomly assign it in some sequences.

ii. Run K iterations of Gibbs sweeps only for the positionsTm of the new

motif, with all other variables in the model kept constant. Each iteration

requires updatingTi;m for all I sequences. The �nal state afterK itera-

tions is the launch state, containing the new motif width andpositions,

f W a
m ; TL

m g.

iii. Perform one more Gibbs sweep for the new motif over allI sequences to

generate the proposed state,Ta
m . Note that the width variable, W a

m does

not change. Compute the forward transition probability

Q(Ta
m jTL

m ) =
Y

i

P(Ta
i;m jTL

j>i;m ; Ta
j<i;m ; S) (4.8)

as you perform the sampling.

iv. The backwards transition probability is given byQr (Tm ) / 1
1+

P I
i =1 [Ti;m > 0]

,

where m is the index of the newly added motif. This probability is a

direct result of the motif removal procedure of step 2(b).

(b) To propose removing a motif,

i. Choose one of the motifs in the model with probabilityQr (Tm ), given

above, so that the less frequently a motif appears, the more likely it is to

be chosen for removal. Removing a motif simply involves removing the

variables associated with the motif. There is only one way todo this, and

so the forward transition probability Q(T r
m jTm ) = Qr (Tm ).

ii. To compute the backward transition probability, the procedure in step

2(a) must be performed. Begin with the proposed state and create a new

motif, setting its width to the width of the removed motif, Wm . Initialize

the position variables,Tm , in the same way done in step 2(a)i.
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iii. Run K iterations of Gibbs sweeps only for the motif positions,Tm , of motif

m. The �nal state after K iterations is the backward launch state, contain-

ing the original motif width and backwards launch positions, f Wm ; TbL

m g.

iv. Compute the backwards transition probability

Q(Tm jTbL

m ) =
Y

i

P(Ti;m jTbL

j>i;m ; Tj<i;m ; S) (4.9)

as it would be computed in step 2(a)iii by performing a Gibbs sweep

for all I sequences. Note that this time no actual sampling is taking

place. Instead, for each sequence, the probability of setting the position

variable, Ti;m , to its original value from step 1 is computed. The variable

must be updated before evaluating the subsequent sequencesto ensure

the conditional probabilities are computed correctly.

3. Accept the proposed transition using the Metropolis-Hastings probability

a(M + 1; W a
m ; Ta

m jM ) = min
�

1;
� r (M + 1) Qr (Tm )P(M + 1; W a; Ta; S)
� a(M )Q(TajTL )P(W a

m )P(M; W; T; S)

�
(4.10)

for adding a motif, and

a(M � 1jM; Wm ; Tm ) = min

 

1;
� a(M � 1)Q(TjTbL

)P(Wm )P(M � 1; W r ; T r ; S)
� r (M )Qr (Tm )P(M; W; T; S)

!

(4.11)

for removing a motif.

The sampling procedure of both motif width,W, and motif count, N , is illustrated

in Figure 4.2

Validity of Algorithm

The validity of the algorithm can be shown by a similar argument to that used by Jain

and Neal [57]. Since the launch state de�nes the transition probability, selecting the

launch state is equivalent to selecting a di�erent Metropolis-Hastings algorithm. So
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Iteration:25 Iteration:50 Iteration:125 Iteration:275

Iteration:500 Iteration:1300 Iteration:1750 Iteration:2225

Iteration:2350 Iteration:3575 Iteration:4100 Iteration:10000

1 2 3

Figure 4.2: An illustrative example of motif count and width sampling. Samples

are retained once every 25 iterations. The model is initialized with a single empty motif

and having not succeeded in locking onto a motif, removes it by iteration 125. A motif

is added back into the model by iteration 275, though a super
uous column has been

added to the beginning of the matrix. That column is removed by iteration 500, and

another column is added by iteration 1300. A second motif is added by iteration 2225,

and after some exploration, locks onto a motif by iteration 3575, after which the two

motifs stay. The PWM used to embed the motifs in the generatedsynthetic sequences

are shown in boxes 1-3. GenBITES considers motifs 1 and 2 to bethe same motif due

to their similarities.
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long as all possible launch states produce valid transitions and are initialized without

reference to the part of the state that is changed, the resulting Metropolis-Hastings

algorithms are valid. It is straightforward to show that given the launch state, the

transition probabilities satisfy detailed balance and arevalid MCMC algorithms. Finally,

it is noted that stochastically selecting among valid MCMC algorithms is a valid way of

constructing a Markov Chain Monte Carlo algorithm [110].

4.3 Incorporating Multiple Group De�nitions

The algorithm presented in Section 4 infers positions in thesequences that re
ect re-

curring motifs that are \surprising" based on the given background model. In certain

situations, a set of examples that are expected to not contain the motifs may be available

that may be used to direct the search. For example, based on microarray experiments, a

set of co-spliced exons would de�ne agroup. It is therefore believed that these exons may

contain binding sites for common splicing factors. By examining the genomic sequences

of the exons and surrounding regions, common motifs could befound that would corre-

spond to these binding sites. If only the co-spliced group isexamined, some, or even all,

of the motifs detected may correspond to motifs that are globally common to all exons in

the organism (possibly contributing to exon de�nition or simply an extension of the back-

ground model) and are not uniquely over-represented in the de�ned group. Statistical

methods address this by comparing the de�ned group (positive examples) to sequences

belonging to exons outside the de�ned group (negative examples). In the above example,

the negative group would be a representative sample of exonsthat are not co-spliced with

the positive group. In this section it is shown how to extend GenBITES to �nd motifs

that are over-represented only in the positive group.

Detecting motifs that appear more commonly in a positive group compared to a

negative group can be achieved by controlling the prior of the motif occurrence parameter,
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 . Instead of a motif having only a single
 parameter, it is allowed to have multiple

parameters, where the group to which the sequence belongs todictates which value of


to use. Speci�cally,

P(
 m;g ) =
�( ag + bg)
�( ag)�( bg)


 ag � 1
m;g (1 � 
 m;g )bg � 1: (4.12)

where the subscriptm indicates the motif, and the subscriptg indicates the group. Each

sequence is associated with a speci�c group (based on microarray analysis, for example),

and the probability of seeing a motif occurrence in a given sequence is given by

P(Ti jW; L i ; gi ) =

8
>>><

>>>:

1

D(W; L i ; Ti )

MQ

m=1

 [Ti;m > 0]

m;g i (1 � 
 m;g i )
[Ti;m =0] if no overlap

0 otherwise

(4.13)

wheregi is an observed variable.

In the example given at the beginning of the section, two group de�nitions are required

for the positive and negative samples. Settinga0 = 5, b0 = 95 for the negative group

(gi = 0), and a1 = 75, b1 = 25 for the positive groups (gi = 1) can achieve the desired

e�ect. These priors would direct the inference to �nd motifsthat are common in the

positive groups (appearing in� 75% of the sequences), and rare in the negative group

(appearing in � 5% of the sequences). Figure 4.3b demonstrates the e�ect of the priors.

However, it is likely that the sequences contain motifs thatare common to both

groups. Detecting these motifs as common to both groups may help direct the search

for over-represented motifs by re�ning the background model. In some situations, these

motifs may even hold interest in and of themselves. Therefore, each motif is associated

with a category. Each category de�nes a separation of the input sequences into groups.

In the above example, two categories would su�ce. Under category A , all sequences are

placed in a single group with a single motif occurrence prior, 
 , whose Beta parameters

are set toaA
0 = 3, bA

0 = 5. A motif associated with categoryA is therefore equally likely

to appear in all sequences at a \medium" frequency. Under category B, the sequences
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are place into two groups, based on the microarray analysis,and the Beta parameters are

set the values speci�ed above. A motif associated with category B would be more likely

to appear in sequences belonging to groupgi = 1 that in sequences belonging to group

gi = 0. The category associated with the motif determines if it is a common motif, or

one that is over-represented in the positive group (Figure 4.3a-b).

Formally, let Gy = f g1;y ; : : : ; gI;y g be a set of indicatorsgi;y = 1 : : : Gy dividing the I

sequences intoGy groups. Note that Gy de�nes a category as described above. Let
 Gy

be a vector ofGy values with a prior probability given by

P(
 Gy ) =
GyY

r =1

�( aGy
r + bGy

r )

�( aGy
r )�( bGy

r )
(
 Gy

r )a
Gy
r (1 � 
 Gy

r )b
Gy
r (4.14)

The full joint probability for this extended model is

P(M; W; T; S; y) =

P(M )
MY

m=1

P(Wm )P(ym )
WmY

w=1

�(4 � )
�( � )4

Q 4
n=1 �( Nm;w;n + � )

�(
P 4

n=1 Nm;c;n + � )
�

IY

i =1

B(Si ; Ti )

D(W; L i ; Ti )

�
Gy mY

r =1

�( aGy m
r + bGy m

r )

�( aGy m
r )�( bGy m

r )

�(
IP

i =1
gi;y m = r

[Ti;m > 0] + aGy m
r )�(

IP

i =1
gi;y m = r

[Ti;m = 0] + bGy m
r )

�(
IP

i =1
gi;y m = r

[Ti;m > 0] + aGy m
r +

IP

i =1
gi;y m = r

[Ti;m = 0] + bGy m
r )

(4.15)

where ym indicates the category associated with motifm and is sampled using Gibbs

sampling. Note that the model is not limited simply to positive and negative groups, nor

is it limited to two categories. As shown in Figure 4.3c, an application can arise where

the data may be divided into many groups and categories.

4.3.1 Interpreting GenBITES Results

Most, if not all, motif detection algorithms aim to provide the user with a concise list of

detected motifs. Depending on the model used, these may be inthe form of consensus
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a = 5, b = 95 (negative group)
a = 75, b = 25 (positive group)
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� 1 � 2� 0

(c)

Figure 4.3: The use of categories for �nding over-represented motifs . (a) Sep-

aration of the data into categories and groups. Each point represents an abstraction of

a single sequence, where grouped sequences represent a de�ned group. Each sequence

has two group associations, depending on the category. Under category A all sequences

belong to the same group, and under categoryB, the sequences are divided into two

mutually exclusive groups. (b) The motif occurrences priors on the 
 variables used in

the example. The dotted line shows the prior on the negative groups (B0), where few

motifs are expected to be found. The solid line shows the prior on the positive groups

(B1), where the motif is expected to be over-represented. The dashed line shows the prior

for motifs that are common to both groups (A ). (c) The model is not limited to positive

and negative groups. Depending on the application and data,there may be multiple

category de�nitions, each with multiple mutually exclusive groups.
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motifs, m

sequences, i

ym

Figure 4.4: Bayesian Network for GenBITES. The solid nodes and vertices represent

the relationship of the variables in the exploratory version of GenBITES. The dashed

node and vertex,y, is the category indicator added to enable discriminatory detection of

motifs. The choice of category,ym , for motif m selects among a set of prior distributions

that di�erentiate the motif inclusion prior 
 m between groups.
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sequences or PWMs, and the inherent assumption is that one ormore regulatory factors

bind to each of the detected motifs. The motifs can then be used when scanning new

sequences to �nd potential binding sites. However, when doing so, the user is limited by

the de�nition of the consensus sequences, or a hard threshold applied to a PWM.

It is possible to process the posterior returned by GenBITESto produce a set of

de�nitive PWMs, capturing modes of the posterior, and providing results similar to

those of other algorithms. However, this approach loses much information contained in

the posterior distribution. Naturally, the uncertainty about the motifs and their sequence

positions is not captured by one or a small number of distribution modes. Additionally,

positional dependencies can arise from information contained in the sequences despite

the use of the PWM model. For example, A PWM may show that A and Gappear with

equal probability in position 3 and C and T appear with equal probability in position

5. An examination of the data may reveal that A always appearswith T and G always

appears with C, making those positions dependent. However,by reverting to a PWM

format for the output, these positional dependencies wouldbe lost.

In addition to the analytical challenges of obtaining the distribution modes, and the

inherent loss of information, the ultimate goal of most motif �nding analyses is to identify

potential binding sites of regulatory factors. Typically,the detected PWMs would be used

to analyze sequences for binding sites.

A more elegant solution arises when considering that GenBITES provides the poste-

rior distribution over all variables in the model, not just the motif's PWM. Signi�cantly,

GenBITES outputs the posterior over the choice for each nucleotide in the sequence of

whether it originated from the background model or the motifmodel. As shown in Fig-

ure 4.5a, this can be used to identify potential binding sites in the provided sequences

irrespective of what motifs exist, their lengths, or even how many there are.

Another useful piece of information that can be easily extracted from GenBITES'

output is the strength of N-mers as potential binding sites.Given the MCMC samples,
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CATTTAAGTCTTCAACCCATTGTGAGTTGATTTTTACAGATGGTGTAAGGAAGGGGTCCAGTTTCAATCTTTTGCATACAGCTAGCCAGTTATCCCAGTA

N-mer Count

CCTCAGCCTC 5285

GCAGTGAGC 3637

CCTCAGCCT 2447

GGTGGCTC 2082

AGGCTGAGGT 502

CCTCAGCCTA 423

...
...

(a) (b)

Figure 4.5: Sample GenBITES output. (a) The samples collected by MCMC sam-

pling are processed to compute the probability of each position in the sequence belonging

to a binding site. (b) The samples can additionally be used tocount the number of times

each unique N-mer appeared as part of a binding site. The N-mers are then sorted by the

number of times they appeared, indicating the strength of the potential binding sites.
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one can count how many times each unique N-mer appeared as drawn from a motif

PWM. The number of times each N-mer appeared then provides its relative strength

(Figure 4.5b). While useful, this view of the motifs should be analyzed carefully. For

example, a vague motif (one whose PWM contains several positions in which a single

nucleotide represents most of the probability mass and/or whose length may vary) may

be more abundant, and just as strong a binding site, as another, more deterministic motif

(one whose PWM contains many positions in which a single nucleotide represents most

of the probability mass and whose length is �xed). However, since the deterministic

motif captures only a few unique N-mers, while the vague motif is spread over many

N-mers, the latter's N-mers may have lower individual counts, and therefore appear

weaker. Nonetheless much insight may be gained from this approach. In particular, if

the sequences contain known motifs, it is simple to determine, using this approach, if

these motifs were found.

4.4 Experimental Results

4.4.1 Pro�ling GenBITES Performance and Behaviour

To analyze GenBITES behavior under varying conditions, synthetic data sets were gen-

erated. These data sets were drawn from the Bayesian networkshown in Figure 4.4, with

a background distribution drawn from a third order Markov chain shown in Figure 4.1.

Three simulated experiments were used to evaluate di�erentproperties of the algorithm.

In all cases, the Dirichlet parameter of the PWM,� , was set to 0.1.

1. 10 data sets ofI = 100 relatively short sequences (100nt) were generated, with a

single motif of length 8 embedded inpI of the sequences. The fraction of sequences

with motifs, p, was varied in 0:01 increments from 0:01 to 0:99 to generate a total

of 990 di�erent subsets, each analyzed separately by GenBITES. Each subset used

a randomly drawn PWM from the model.
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2. 10 data sets ofI relatively short sequences (100nt) were generated, with a single

motif of length 8 embedded inpI of the sequences.I was varied exponentially from

10 to 2560 andp was varied in 0:1 increments from 0:2 to 0:9 to generate a total of

720 di�erent subsets, each analyzed separately by GenBITES. Each subset used a

unique randomly drawn PWM from the model.

3. M motifs were embedded in 100 relatively long sequences (10,000nt), where M

was varied from 1 to 45. Each subset's PWMs were incrementally drawn from the

prior ( i.e. the mth subset used the same PWMs as the (m � 1)th subset, with one

additional PWM drawn from the prior). The motif inclusion probability was drawn

independently for each motif from aB(5; 5) prior.

GenBITES was run using a single category setting containinga single group (non-

discriminative mode). Unless stated otherwise, the following hyperparameter settings

were used:

� The prior on the number of motifs, P(M ), was set to be approximately Poisson

with mode at 2 and 3 motifs.

� In the Dirichlet prior on the PWM, � = 0:1 for all nucleotides.

� A vague Beta distribution was used for the prior on motif inclusion probability

P(
 ) = B(1; 1)

� 25,000 iterations of MCMC were discarded during the burn-inphase, and then

100 samples were collected every 250 iterations. 92% of the iterations performed

Gibbs sampling on the motif positions,T, 6% of the iterations performed sampling

on the motif length (a single motif, chosen randomly and uniformly), and 2% of

the iterations proposed to either add or remove a motif usinga side chain of 20

iterations (see Section 4.2.3 for more details). Five chains were used for each subset

yielding a total of 500 samples for each subset.
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Table 4.1: Hidden Markov model parameters used to generate background

sequences for the synthetic data. For a given position,i , the nucleotidepi is drawn

with probability P(pi jpi � 1; pi � 2; pi � 3).

p P ( pj A; A; A ) P ( pj C; A; A ) P ( pj G; A; A ) P ( pj T; A; A )

A 0.243 0.446 0.21 0.119

C 0.0423 0.425 0.212 0.254

G 0.296 0.0557 0.357 0.345

T 0.418 0.0733 0.221 0.283

p P ( pj A; C; A ) P ( pj C; C; A ) P ( pj G; C; A ) P ( pj T; C; A )

A 0.5 0.496 0.47 0.238

C 0.00592 0.0363 0.165 0.157

G 0.423 0.467 0.222 0.232

T 0.071 0.00073 0.142 0.373

p P ( pj A; G; A ) P ( pj C; G; A ) P ( pj G; G; A ) P ( pj T; G; A )

A 0.137 0.122 0.274 0.215

C 0.35 0.608 0.192 0.306

G 0.371 0.0968 0.236 0.0997

T 0.143 0.173 0.298 0.379

p P ( pj A; T; A ) P ( pj C; T; A ) P ( pj G; T; A ) P ( pj T; T; A )

A 0.257 0.182 0.239 0.186

C 0.459 0.123 0.282 0.365

G 0.0562 0.092 0.0933 0.0524

T 0.228 0.603 0.385 0.397

p P ( pj A; A; C ) P ( pj C; A; C ) P ( pj G; A; C ) P ( pj T; A; C )

A 0.424 0.165 0.279 0.158

C 0.0919 0.395 0.246 0.274

G 0.258 0.123 0.368 0.421

T 0.226 0.317 0.106 0.146

p P ( pj A; C; C ) P ( pj C; C; C ) P ( pj G; C; C ) P ( pj T; C; C )

A 0.514 0.187 0.36 0.285

C 0.321 0.286 0.501 0.23

G 0.00931 0.404 0.111 0.281

T 0.155 0.124 0.0288 0.204

p P ( pj A; G; C ) P ( pj C; G; C ) P ( pj G; G; C ) P ( pj T; G; C )

A 0.321 0.179 0.319 0.255

C 0.352 0.36 0.307 0.167

G 0.205 0.4 0.0367 0.225

T 0.122 0.061 0.337 0.353

p P ( pj A; T; C ) P ( pj C; T; C ) P ( pj G; T; C ) P ( pj T; T; C )

A 0.237 0.463 0.17 0.343

C 0.219 0.134 0.216 0.291

G 0.265 0.289 0.364 0.183

T 0.279 0.114 0.25 0.183

p P ( pj A; A; G ) P ( pj C; A; G ) P ( pj G; A; G ) P ( pj T; A; G )

A 0.353 0.905 0.308 0.171

C 0.274 0.0715 0.302 0.418

G 0.0426 0.0197 0.364 0.226

T 0.33 0.00342 0.0252 0.185

p P ( pj A; C; G ) P ( pj C; C; G ) P ( pj G; C; G ) P ( pj T; C; G )

A 0.271 0.311 0.194 0.222

C 0.0665 0.382 0.182 0.217

G 0.602 0.241 0.216 0.382

T 0.0605 0.0659 0.407 0.179

p P ( pj A; G; G ) P ( pj C; G; G ) P ( pj G; G; G ) P ( pj T; G; G )

A 0.353 0.147 0.0132 0.306

C 0.39 0.474 0.512 0.224

G 0.0872 0.0578 0.47 0.279

T 0.17 0.321 0.00522 0.191

p P ( pj A; T; G ) P ( pj C; T; G ) P ( pj G; T; G ) P ( pj T; T; G )

A 0.0988 0.374 0.0826 0.0928

C 0.342 0.406 0.11 0.0755

G 0.398 0.00207 0.417 0.207

T 0.162 0.218 0.39 0.624

p P ( pj A; A; T ) P ( pj C; A; T ) P ( pj G; A; T ) P ( pj T; A; T )

A 0.522 0.331 0.293 0.132

C 0.162 0.385 0.255 0.258

G 0.123 0.189 0.243 0.296

T 0.194 0.0957 0.209 0.314

p P ( pj A; C; T ) P ( pj C; C; T ) P ( pj G; C; T ) P ( pj T; C; T )

A 0.41 0.303 0.265 0.185

C 0.132 0.18 0.358 0.361

G 0.0704 0.394 0.217 0.171

T 0.387 0.122 0.16 0.283

p P ( pj A; G; T ) P ( pj C; G; T ) P ( pj G; G; T ) P ( pj T; G; T )

A 0.42 0.234 0.304 0.3

C 0.262 0.304 0.156 0.393

G 0.263 0.169 0.233 0.169

T 0.0548 0.294 0.307 0.138

p P ( pj A; T; T ) P ( pj C; T; T ) P ( pj G; T; T ) P ( pj T; T; T )

A 0.434 0.183 0.4 0.0683

C 0.16 0.279 0.276 0.441

G 0.027 0.361 0.216 0.454

T 0.379 0.177 0.107 0.0375
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Figure 4.6: GenBITES performance as a function of fraction of sequences con-

taining the motif for data set 1 (vague inclusion prior). Average posterior prob-

ability of being a motif is shown for nucleotides generated using the motif model (\true

positives") and for nucleotides generated using the background model (\false positives"),

as a function of the fraction of the sequences containing themotif. Given 100 sequences,

fewer than 10 sequences containing the motif is su�cient foraccurate detection.
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Using the above settings, each of the subsets in data set 1 wasanalyzed. After

computing the position for each nucleotide in the sequence as generated from a motif

model or background, the average posterior over positions that was generated using the

PWM model (\true positives") and the average posterior probability of the nucleotides

being in a motif over positions that were generated using thebackground model (\false

positives") were computed and shown in Figure 4.6. Even though the motif inclusion

probability was vague, the algorithm is able to correctly identify the motif with fewer

than 10 sequences containing the motif. Furthermore, GenBITES is not confused by the

background, and places very little mass on sequence position that do not contain motifs.

In the above experiment, the motif inclusion prior was kept constant and vague

when analyzing the di�erent subsets. To evaluate the e�ect of the prior, two fur-

ther experiments were applied to the data. In the �rst, the prior was set such that

if pI sequences contain the motif, the beta prior has a strong modeat p by setting

P(
 ) = B(pI + 1; (1 � p)I + 1). In the second experiment, an opposing prior was applied

to the data sets, where the prior was set to counteract the signal in the data by setting

P(
 ) = B((1 � p)I + 1; pI + 1). A mild improvement can be seen in the GenBITES

results when using a strong accurate prior, while a strong deterioration is evident with

the opposing prior. In particular, no motifs are detected with p � 0:18, and strong pos-

terior probability on the nucleotides being part of motifs are only evident forp � 0:3. At

that point, the prior is not as opposing as at lower values ofp, and the stronger signal

helps successful detection. At highp values (p > 0:8), the posterior probability drops

signi�cantly, but stays strong nonetheless.

To quantify the e�ect of the di�erent priors on successful motif detection, it is possible

to use the posterior as a tunable threshold for decision making, and thereby generate a

ROC curve2, as shown in Figure 4.7. It is important to note that the high values may

2ROC curves are used for evaluating classi�ers by plotting sensitivity against 1-speci�city as a function
of a decision threshold. The area under the curve can serve asa single measure of the quality of the
classi�er, where a random classi�er has an area of 0.5, and perfect one has an area of 1.
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be somewhat misleading due to the large number of \negatives" (nucleotides generated

from the background). For example, atp = 0:09, the area under the curve is 0.87,

suggesting reasonably good classi�cation. However, setting the threshold to achieve 0.5

sensitivity (i.e. half of the motifs' nucleotides are detected) yields 0.99 speci�city, but

the number of false positives is 3.5 times that of the true positives (1239 as compared to

361). Nonetheless, it can be seen in Figure 4.7 that forp � 0:15, accurate classi�cation

is achieved with a vague motif inclusion prior, dropping to around 0:1 with an accurate

prior. With an opposing prior, a strong signal is required and accurate classi�cation is

possible only aroundp � 0:3

Data set 2 was analyzed using the parameters discussed in Section 4.4.1. As seen in

Figure 4.8, as little as 20 sequences is enough when the motifis abundant, though 40 or

more sequences may be required when the motif is rarer. Once again, GenBITES used a

vague motif inclusion prior, and one should expect fewer sequences to be required if an

accurate prior is used.

Finally, data set 3 was analyzed, again using the hyper-parameters described above.

However, to accommodate the increasing number of motifs, the prior on the number of

motifs was set to a geometric distribution with parameter 0:9. As seen in Figure 4.9,

GenASAP had no di�culty in accurately identifying the embedded motifs.

Admittedly, the synthetic data sets discussed in this section were generated from

the model, simplifying the analysis since the model's assumptions are guaranteed to be

correct. One should not, in general, expect the algorithm toperform as well on real

data. Nonetheless, this analysis proves the potential of GenBITES, and its adaptability

to limited or increased amount of data. Additionally, giventhe right parameter setting,

it is possible to detect even very weak signals.
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Figure 4.7: Area under the curve for data set 1 with three settings for the

prior on motif inclusions. For each the three experiments on data set 1, the area

under the ROC curve is computed as a function of the proportion of the sequences

that contain the motifs. A strong and accurate prior on the motif inclusion is helpful

and enables somewhat better motif detection over vague prior. A strong opposing prior

greatly hinders the classi�cation when the signal is weak, but has little e�ect when the

motif appears in a large proportion of the sequences.
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Figure 4.8: GenBites performance as a function of the number of input se-

quences. Using a vague prior, GenBITES requires fewer than 20 sequences to accurately

detect abundant motifs, and fewer than 40 sequences to correctly identify rare motifs.
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Figure 4.9: GenBITES performance as a function of the number of motifs

present. Even as then number of present motifs increase, GenBITES is able to success-

fully detect all the embedded motifs. A slow rise is seen in the average posterior of false

negative, and a corresponding slow drop in the average posterior of the true positives

can be observed. However, those may have more to do with the prior on the number of

motifs (geometric), and a con�dent and accurate prior may allow for a better posterior.
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4.4.2 Benchmarking GenBITES

In 2005, Tompaet. al. designed a benchmark data set consisting of sequences extracted

from promoter regions of mouse, human, yeast, and 
y [111]. The data set consisted of

real sequences, extracted without change from genomes and containing known TRANS-

FAC motifs; generic sequences, where a known motif was embedded into a real promoter

region of the designated species, but which is not known to contain the motif; and random

sequences, where a known motif was embedded into generated synthetic sequences. In

total 56 data sets are available, containing from 1 to 35 sequences, with 23 sets containing

fewer than 5 sequences, and 45 containing fewer than 10 sequences. The sequences are

typically long, consisting of 500{3000 nucleotides.

The results and performance of 13 motif �nding algorithms were reported by Tompa

et. al. . To provide fair comparisons, each algorithm was applied bythe group who �rst

designed and implemented it. All the methods compared in theassessment are reviewed

in Section 2.6.2. Each algorithm must report the single mostdominant motif found for

each data set (if any) by identifying the positions of that motif in the sequences.

There are seven statistics that are collected based on the reported results. The �rst

four are nucleotide level statistics, independently considering each nucleotide in the se-

quence:

1. nTP is the number of nucleotide positions in known binding sitesthat are correctly

predicted to be part of a binding site by the algorithm.

2. nFP is the number of nucleotide positions not in known binding sites that are

predicted to be part of a binding site by the algorithm.

3. nFN is the number of nucleotide positions in known binding sitesthat are predicted

to not be part of a binding site by the algorithm.

4. nTN is the number of nucleotide positions not in known binding sites that are

correctly predicted to not be part of a binding site by the algorithm.
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Statistics 1, 2, and 3, abover were also collected at the sitelevel. To determine if a

binding site was correctly predicted, a predicted motif must overlap with the site by

at least 1=4 of its length. Note that at the site level, it is unclear how to count \true

negatives", and this statistic is not collected:

4. sTP is the number of correctly predicted known biding sites.

5. sFP is the number of predicted binding sites not overlapping with known ones.

6. sFN is the number of known binding sites not predicted by the algorithm.

The above statistics are combined to form the following evaluation criteria, where x

represents eithern, for nucleotide level statistics, ors, for site level statistics:

1. Recall (sensitivity): xSn = xTP=(xTP + xFN )

2. Precision (positive predictive value):xP P V = xTP=(xTP + xFP )

Recall and precision can be de�ned at both the nucleotide level and binding site level.

In addition, Tompa et. al. de�ne the average site level performance as

3. Average Site Performance:sASP = ( sSn + sP P V)=2

and �nally, at the nucleotide level

4. Speci�city: nSp = nTN=(nTN + nF P )

5. Performance Coe�cient: nP C = nTP=(nTP + nF N + nF P )

6. Correlation Coe�cient: nCC = nT P �nT N � nF N �nF Pp
(nT P + nF N )( nT N + nF P )( nT P + nF P )( nT N + nF N )

The benchmark was run with the following hyperparameters:

1. � = 0.1

2. P(M ) = 0 :9M � 0:1
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3. P(
 ) = B(80; 20) (i.e. the mode is at
 = 0:8)

4. 5 chains were run for each data set, discarding the �rst 50,000 iterations as burn

in, and keeping a single sample once every 200 iterations fora total of 250 samples.

10% of the iterations were used for samplingW and 5% of the iterations were used

for sampling M .

As noted above, each benchmark must report the single most popular motif for each

subset evaluated, if any motifs were found. To select the most popular motif found by

GenBITES for each sequence, the most popular N-mer (see Section 4.3.1 and Figure

4.5b for details) was determined. The posterior was then evaluated only for those motifs

for which the N-mer was included as a binding site. The binding site posterior pro�le

(as seen in Figure 4.5a) must then be thresholded to make a hard decision for which

positions in the data are potential binding sites. A reasonable number for this threshold

would be in the range of 0:1 { 0:2, since (a) the posterior has already been �ltered to

consider only motifs containing the most popular N-mer, and(b) sequences containing

2 (or more) binding sites would have the posterior split between the two, resulting in a

maximum value of 0:5 (or less). However, the results presented here consider a range of

threshold from 0 (everything is a binding site) to 1 (nothingis a binding site), with 0:01

increments, to generate performance curves.

Interestingly the results presented below do not change much when the full posterior

is considered (data not shown). The thresholds at which similar performance is observed

are predictably somewhat higher, as no �ltering is applied.This is because, for those

subsets for which motifs were found, most mass is placed in motifs that either contain

the most popular N-mer, or N-mers very similar to it (usuallyshorter/longer).

The results of the algorithms analyzed by Tompaet. al. are available onhttp://bio.

cs.washington.edu/assessment/ (last accessed April 11, 2009), and can be compared

to the results of GenBITES. Figure 4.10 shows the precision/recall curve for GenBITES,

as compared to the performance published for other methods.A comparison on the
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Figure 4.10: Precision/Recall comparisons of GenBITES and other method s.

A full precision/recall curve is available for GenBITES, while other algorithms are rep-

resented by a single point on the graph based on their published results. The further

a method is to the upper-right corner of the graph, the betterits overall performance.

GenBITES outperforms all previous methods except Weeder. It is possible to oper-

ate GenBITES at a level with better site-level precision or better site-level recall than

Weeder, but not both.
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remaining evaluation criteria used by Tompaet. al. are shown in Figure 4.11. With the

exception of the Weeder algorithm, GenBITES outperforms all other algorithms in every

evaluation criterion save performance coe�cient, where itis nonetheless among the top

performers. It is possible to operate GenBITES at a level with better site-level precision

or better site-level recall than Weeder, but not both. The remarkable performance of

GenBITES is even more impressive when one considers that it does not explicitly model

multiple occurrences of individual motif per sequence, leading to no predictions in any

subset with less than 6 sequences (43 sequences out of 56).

The numerical values of the results appear low (precision generally lower than 0.2 and

recall lower than 0.5), and Tompaet. al. provide an explanation in the original study [111].

In short, the low scores are the result of the lack of ground truth and setup restrictions.

The lack of ground truth means that algorithms may detect motifs that, while not the

motif which was expected to be found, are true binding sites nonetheless (in real or generic

sequences). In addition, many of the motifs extracted from the TRANSFAC database

are long (up to 71nt), while the true binding sites may be muchshorter, contributing to

low recall scores. The setup restrictions meant that each algorithm may report only a

single enriched motif for each subset, and were not allowed to use secondary information,

such as secondary structure or comparative genomics (conservation), which are known to

greatly help direct motif detection. Finally, no discriminative analysis was utilized, and

each subset was to be analyzed independently.

It is curious to note Weeder's exceptional performance. While clearly surpassing

all other algorithms in every criteria, usually by a large margin, Tompa et. al. do not

unequivocally claim it is better than the other published algorithms. Weeder uses a

model very similar to that of MITRA, yet is unmatched by any of the algorithms, while

MITRA is an average performer.
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Figure 4.11: Other evaluation criteria for benchmark results. The curves gen-

erated by varying the threshold cuto� for GenBITES comparedto results published

for other methods on benchmark data set. In general, at operating level of 0:1 { 0:2,

GenBITES outperforms most other methods. GenBITES has higher speci�city than all

other methods when operating at that range. However, since all methods have very high

speci�city, it serves as a less useful evaluation criteria.
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Table 4.2: Group sizes for AS sequence data set. The number of AS events in each

of the four groups de�ned for AS motif analysis.

CNS Muscle Embryo Other

Increased skipping 152 200 302 250

Increased inclusion 211 203 215 264

No change 2637 2597 2483 2486

4.4.3 Alternative splicing data

In Section 3.2, the mouse 44k microarray data set was introduced (MM44k). This data

set was used to search for potential binding sites in the exons and surrounding intronic

regions. Four major tissue groups were recognized, and AS events were assigned as either

di�erentially spliced (increased inclusion or increased skipping) for that group, or \no

change" if the event was either not expressed in that group, or exhibited similar splicing

as that seen in other expressed tissues. The four tissue groups are: central nervous

system (CNS), consisting of brain tissues, spinal cord, andeye; muscle, consisting of

heart, tongue, skeletal muscle,etc; embryonic tissues; and \other", consisting of various

internal organs, teeth, mammary gland, and other tissues not matching the �rst three

groups.

The analysis to classify each AS event is described in detailelsewhere [10]. Brie
y,

Yoseph Barash of the PSI lab at the University of Toronto designed and implemented an

algorithm based on factor analysis, where the choice of factors to use and data to model

is sparse. Priors on the data, based on expression level, ensure that only relevant probes

containing meaningful signals are analyzed by the algorithm (low expressing probes have

low, if any, signal content, as seen in Section 3.4.3).

For each AS event, �ve sequence regions were analyzed, as seen in Figure 4.12:

1. C1: Constitutive exon upstream of the skipped exon. If the exon was longer than
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C1 C2A
I2

I1

Figure 4.12: AS sequence regions analyzed by GenBITES. For each AS event,

seven regions were analyzed as shown. Each of the three exonsinvolved in the AS event

was included in its entirety if under 600nt. For longer exons, regions further than 300nt

from the nearest splice site were not analyzed. Each of the 
anking introns was split into

two sections of length 300nt 
anking the exons.

600nt, regions further than 300nt from either splice site were not analyzed.

2. I 1: 300nt immediately upstream ofA.

3. A: The alternative exons. If the exon was longer than 600nt, regions further than

300nt from either splice site were not analyzed.

4. I 2: 300nt immediately downstream ofA.

5. C2: Constitutive exon downstream of the skipped exon. If the exon was longer

than 600nt, regions further than 300nt from either splice site were not analyzed.

Each region was analyzed against three data sets for each of the four tissue groups de-

scribed above, composed of positive and negative examples.The positive examples were

comprised of increased inclusion events, increased exclusion events, and both (\change"),

as compared to the negative examples of \no change" events. In total 60 data sets were

analyzed (5 regions, 4 groups, 3 de�nitions of positive/negative events).

There are a number of known alternative splicing motifs based on targeted studies,

as well as the ones mentioned in Section 2.6.3. To determine if a known motif was found,

the N-mer counts were �rst summarized as shown in Figure 4.5b. The known binding
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targets of the AS factors were then summed up and compared to the total number of

N-mers detected in each region.

� Polypyrimidine tract-binding protein (PTB) is a known tissue-speci�c splicing fac-

tor that binds to CT-repeats in the I1 region to suppress splicing. The neural

variant, nPTB, acts as a splicing enhancer, leading to the presence of CT-repeats

in the upsteam intron to be associated with increased inclusion in brain tissues

[4]. As expected GenBITES detects a strong signal in the I1 region \CNS" in-

creased inclusion events, while no other strong signals were found for the pattern

YTCTCTY.

� Fox-1 and Fox-2 are two known proteins involved in alternative splicing regulations.

The presence of their target binding sequence, GCATG, in theintron upstream of

an alternative splicing (I1) has been shown to be linked withincreased inclusion in

brain tissues [123]. Curiously, the top n-mer count appearsin the downstream in-

tron, I2, in \CNS" increased inclusion events. The second and third most common

detection of this binding site were in \other" increased skipping events in the I2

intron, and in embryonic \change" I1 intron respectively. It is not currently known

if Fox-1/Fox-2 play a role in di�erentiating splicing events during embryonic devel-

opment, nor is it known if its binding site, when found in the downstream intron,

play a role in CNS or non-CNS tissues.

Analysis of the I1 region reveals the reason GenBITES failedto detect the Fox

binding site where expected (I1, \CNS" increased inclusion). Using the available

group de�nitions, 60 of the 211 sequences (28%) in the \CNS" increased inclusion

group contain the Fox motif. In contrast, 640 of the 2636 sequences (24%) in the

no change group contain the motif. The enrichment is not signi�cant by Fisher

exact test (p-value of 0.10).

� TIA1 is a known splicing factor that binds to T-rich regions in the downstream
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intron. It is associated with various muscular processes, cell morphology and mi-

gration, and RNA metabolism [6]. GenBITES successfully detects the known motif,

and U-rich motifs, where at least four out of 5 consecutive nucleotides are T, have

a strong signal in the I2 region of \muscle" and \CNS" increased inclusion events.

In addition to the known motifs mentioned above, John Calarco of the Blencowe Lab

at University of Toronto, conducted an extensive study of exon 16 in the Damm1 gene,

which was found to be CNS regulated [10]. Figure 4.13a shows the posterior probability

given by GenBITES, aligned to the 300nt upstream of exon 16 (I1), highlights the regions

that were mutated in the experiment. A series of minigene reporters were designed to test

the function of ten separate regions. With the exception of regions 3, 5, and 10, all other

mutated regions have some mass in the posterior inferred by GenBITES. It should be

noted that these regions were not selected based on the results provided by GenBITES,

resulting in the strong signal in positions -29:-11 not being tested.

The reporters were transfected into neuronal mouse cells (N2A cell line) as well as

into non-neuronal cells (NIH-3T3 cell line) RT-PCR assays were performed to test for

e�ects on exon inclusion levels in each reporter.

While none of the ten substitutions a�ected the non-neuronal cell lines, six out of the

seven regions predicted by GenBITES had substantial e�ect on splicing of exon 16 in the

neuronal cells, as shown in Figure 4.13b. Regions 3 and 5 wereselected to act as control

regions, and show a reduced impact on AS. Region 10 represents the binding target for

Fox, which GenBITES did not detect to its lack of signi�cant signal (see above), yet

is shown to have substantial impact on AS. Curiously, while mutating regions 7 and 8

individually a�ect splicing, the combination of mutating r egions 7, 8, and 9 together

signi�cantly reduces exon inclusion levels, suggesting that the factors binding to these

sites may operate antagonistically.
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TTTAAAGAGGAATTATTATATTCCTTCTCCTTCTAAACCTTTTCTTTCCTGAATGTGATT

TGCTCCCACTTGAAATGGTGTGGAGCAAATGTCATCTATCATCTTACACTGTGATCTTCA

CTGTATCTTCAGCCAGACTGGCCCACTTGAGCTAAGGACTTAAAGGGCAGGAAACATCTC

CTGCCCTTTTGTCCTGCACCACCAATGTCCTTAACTGCTTTGACTTTCCCTGTTTGCTGC

TGTGGTTTCTGAATTGCATGTATCTGATTTGCTTTCTCTATGCCTCTGCCATGGCTGTAG
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Figure 4.13: GenBITES predictions and PCR analysis of Daam1 exon 16. (a)

The results from GenBITES analysis of the I1 region of Daam1 exon 16. The white

bars represent the posterior of the analysis, with taller bars representing stronger signals.

The sequence is shown, and the colored boxes correspond to the regions mutated and

analyzed by PCR. (b) Each of the marked regions was mutated, and the e�ect on splicing

for both neuronal and non-neuronal cells is shown. None of the mutation had any e�ect

on splicing for the non-neuronal cells. In general, the GenBITES predictions agree closely

with the PCR results, and mutating predicted regions signi�cantly a�ects splicing.
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4.5 Summary

This chapter has introduced a novel Bayesian algorithm for binding site detection. Gen-

BITES is based on a principled probability model and an exactsampling procedure to

e�ciently infer the full posterior of binding site probabil ities. Despite a plethora of motif

�nding algorithms proposed over the past decade, GenBITES presents several innova-

tions that enabled it to outperform most existing algorithms on a benchmark data set

(Section 4.4.2):

1. Exact and extensive sampling. While many existing algorithms use sampling for

motif detections, few apply it correctly based on a principled probability model

(the original Gibbs sampler is a notable exception). Furthermore, these algorithms

generally apply heuristics to determining the number and width of the motifs,

generally electing to return a con�guration that is \most likely" in some sense (e.g.

the MAP con�guration when a probability model is de�ned).

2. Focus on binding sites instead of motifs. As the name of thealgorithm suggests,

GenBITES focuses on detecting potential binding sites of regulatory factors, rather

than motifs. By not con�ning the output to return a single consensus sequence

or PWM model, GenASAP is able to provide a comprehensive map of potential

binding sites for a sequence, as demonstrated by the analysis of the upstream region

of Daam1 exon 16 (Figure 4.13). Limiting the results of the analysis to a discrete

number of well de�ned motifs would have certainly missed many of the weaker but

signi�cant signals in that region.

3. Explicit use of negative examples in a probability model.The practice of using a

negative set to reveal motifs that distinguish a group of sequences that share com-

mon expression or splicing behavior from other sequences iswidespread. Algorithms

employing this methodology have exclusively relied on statistical or discriminative

approaches when using negative examples. GenBITES represents the �rst explicit



Chapter 4. Bayesian Motif Detection 109

use of multiple group de�nitions in a generative probability model. This approach

has proved crucial when analyzing the alternative splicingdata set, for example,

without which features that are common to all introns and exons are returned,

rather than those that are unique based on the group de�nition.



Chapter 5

Discussion and Conclusions

In this thesis, the use of graphical models for analyzing biological data was demonstrated.

While the focus of the biological analysis was on alternative splicing, many of the tech-

niques explored here are applicable to other types of data. Removing spatial trends in

microarray data (Section 3.1), for example, is a universal preprocessing step for microar-

ray data, regardless of the objective of the study. Similarly, GenBITES has been applied

to a benchmark designed from transcription data and was demonstrated to be one of the

top performing algorithms (Section 4.4.2).

Generative probability models are inherently well suited to studying biological data.

Due to the nature of the experiments, it is rarely possible todirectly measure the quantity

of interest. More often, the data obtained is measuring thee�ect of biological processes,

while it is the causesand processesthat lead to the observations that are of real in-

terest. For example, in Section 3.2, the microarray platform for studying alternative

splicing was introduced. Ideally, the quantities of various isoforms would be measured

directly for further analysis. The quantities actually being measured, however, are noisy

observations of exon and junction expressions. These unobserved processes and causes

can be e�ectively modeled using generative models that account for measurement error,

molecular interactions, and inherent stochasticity in theprocesses.

110
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In Chapter 3, early attempts to achieve large scale quantitative measurements of al-

ternative splicing were discussed. The GenASAP algorithm was instrumental in achiev-

ing accurate estimates of relative isoform content in various tissues and conditions.

GenASAP describes the hidden causes behind the microarray measurements, includ-

ing uncertainty and noise characteristics. As shown in Figure 3.8, GenASAP remains

one of the best estimators of relative exon skipping contentbased on microarray data.

Thanks to advances in microaray fabrication and analysis technology, however, measure-

ment error and cross hybridization has been signi�cantly reduced over the years, and

simple, direct calculation can now generate predictions comparable to those generated

by GenASAP. Nonetheless, GenASAP enabled many studies to beconducted, and con-

clusions to be drawn at a time when no other method was available to analyze accurate

large scale quantitative alternative splicing data.

In contrast to the pioneering work conducted using GenASAP,motif �nding is a prob-

lem as old as the �eld of computational biology, with a plethora of algorithms proposed

in the past two decades. While some of these algorithms have been based on graphical

models, few have taken a principled approach to deriving theaccompanying algorithms,

and most rely on heuristics. Additionally, motif �nding algorithms are commonly ex-

pected to return a concise list of well de�ned motifs (eitherusing a consensus sequence

or PWM format). As seen in Chapter 4, GenBITES uses a generative probability model

to represent the observed sequences as a combination of motifs and background com-

ponents. Rather than rely on heuristics to determine the number and length of motifs,

it incorporates those components into a Bayesian framework, and carries out exact in-

ference using an e�cient MCMC sampling algorithm. By utilizing the entire posterior,

rather than distilling the results into list of PWMs, GenBIT ES is capable of capturing

many sequence features of interest.
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5.1 Future Directions

Computational algorithms for sequence analysis and motif detection are still �nding only

a small fraction of the true binding sites, while at the same time 
agging non-functional

elements as motifs, as seen by the benchmark results in Section 4.4.2. GenBITES has

demonstrated that a principled model coupled with an exact algorithm is a powerful

approach to motif detection.

Multiple Motif Occurrences

The main limitation of GenBITES is its inability to model mul tiple instances of a motif

in a single sequence. A small modi�cation to the algorithm presented in Section 4.2

can handle a model with multiple motif instances per sequence. Recall that the motif

position indicators, Ti;m , are scalar variables pointing to the position of the motifm in

sequencei . These may be replaced by a vectorB i of the same length as the sequencei ,

where each elementB i;t indicates which motif (if any) begins at that position. The same

non-overlap constraints as those used forT can be imposed, and Gibbs sampling may be

performed for possible motifs at each position, rather thanfor the position of each motif.

There are a few issues that need to addressed, however:

1. The prior onB. There are two priors that seem appropriate in this context.First is

the binomial prior, where each position,B i;t , is independently the start of one of the

M motifs (or none) with probability proportional to pm . The second intuitive prior

is the geometric prior, where the positions of the motif is uniformly distributed

once the number of instances of the motif has been generated from a geometric

distribution.

2. One important feature of GenBITES was the assumption thatthe probability of

adding more motifs to a sequence than its length would allow is negligible. This

assumption was instrumental in deriving the functionD and was safe, so long
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as the number of motifs in a sequence was limited by the numberof motifs and

their lengths. However, if each motif can appear multiple times in a sequence,

this probability may not be negligible, and will considerably a�ect the function D.

Computing this e�ect is not trivial.

3. GenBITES additionally assumes a uniform prior on motif position within a se-

quence. With multiple motifs, it may become important to model position de-

pendence within the sequence. Again, this will have a considerable e�ect on the

partition function, which would have to be accounted for.

Modeling multiple occurrences of individual motifs is onlycritical in a couple of

scenarios. The �rst is when very few sequences are availableand each motif is expected

to appear multiple times within each sequence. When enough sequences are available

(10-20 su�ce based on the synthetic data and benchmark results in Sections 4.4.1 and

4.4.2), GenBITES in its current incarnation is able to sample from the resulting multi-

modal posterior e�ciently. The second scenario is when the number of motifs occurring

in each sequence is more informative than whether or not theyappear in the sequence

(e.g. Nova splicing motifs [112]). Unfortunately, in this case, no amount of data help

GenBITES, and explicitly modeling multiple motif occurrences is necessary.

Positional Bias

Currently, GenBITES motif occurrence prior is uniform across the sequence, as seen

in Equation (4.1). However, there are many factors that may be incorporated to form

positional bias, such as:

1. Secondary structure: although commonly presented as a linear sequence, RNA

molecules typically bend and self-hybridize to form what isknown as secondary

structure. Tools are available that predict RNA secondary structure based on the

sequence [26, 73].
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Figure 5.1: Incorporating side information in GenBITE. Information about RNA

secondary structure,R, phylogenetic conservation,C, and discriminative features,F ,

and potentially others can be incorporating them into GenBITES by including them as

additional observed leaf nodes. The unobserved variables remain the same as the current

GenBITES model shown in Figure 4.4.

2. Phylogenetic conservation: comparative genomics provide information regarding

the conservation of sequence elements across species. It isgenerally accepted that

highly conserved sequence regions tend to be functional.

3. Discriminative sequence features: it is possible to de�ne a set of sequence features

and train a discriminative model to recognize sequence regions that are likely to

contain binding sites, as is done by thePriority algorithm [75, 76].

The major di�culty in setting a positional prior arises in correctly computing the

partition function in Equation (4.1). Due to varying positional weights,D is no longer a

single combinatorial computation.
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An alternative to explicit positional bias can be found in the generative model frame-

work. Any of the above information can be added as observed leaves to the Bayesian

Network, and properly settingP(RjT; W), P(CjT; W), and P(F jT; W), for the secondary

RNA structure, conservation, and discriminative featuresrespectively, as shown in Figure

5.1. For instance,P(CjT; W) is set based on the conservation analysis to be high in bind-

ing sites (regions of the sequence covered byT), and ambiguous in regions not covered by

binding sites. The rational, of course, being that binding sites are well conserved across

species, while background elements may or may not be conserved. Similarly, P(F jT; W)

can be set based on the features' ability to discriminate between binding sites and back-

ground elements. Incorporating secondary structure wouldrequire careful consideration,

as several e�ects are possible. Are some motifs only e�ective as binding sites in conjunc-

tion with particular secondary structures? Are some secondary structure act to suppress

or enhance the function of certain motifs as binding sites? The answers to these questions

are not obvious, and further study would be required to best utilize the information.

5.2 Final Remarks

As the �eld of computational biology ventures forward, and new forms of data become

available, new analysis tools will need to be designed. Algorithms based on graphical

models have been proven to be e�ective and provide meaningful and informative results.

With the help of algorithms such as GenASAP and GenBITES, the�eld of alternative

splicing has seen considerable progress in the past few years characterizing global behavior

of splicing, evolution, regulation, and RNA processing [6,10, 19, 32, 40, 54, 82{85, 121]. As

collaborations between those who generate large biological data sets, and those with the

tools to analyze them deepen, the e�ectiveness of large scale studies will continue to

increase, and the secrets of the human body will not remain hidden from mankind for

long.
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Appendix A

Variational Updates for GenASAP

The free energy of GenASAPv1, based on the equations in Section 3.3 and the structured

Q distribution is

F (Q; P) =
X

r

X

o

Z

s
Q(s; o; r) log

Q(s; o; r)
P(s; o; r; x)

=
X

i

X

r

� i;r log� i;r +
X

i

X

r

� i;r

X

o

! i;r;o log! i;r;o +
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X

r

� i;r

X

o

! i;r;o

Z

s
Q(sjo; r) [log Q(sjo; r) � logP(s; o; r; x)] :

(A.1)

Before the integral is expanded in the above equation, some notation needs to be de�ned.

First, the subscripts i , r and o are dropped to simplify the math. Additionally, the

symbols s � � and s
� are used to indicate that two vectors are multiplied and divided

element-wise respectively (as in Matlab's .* and ./). Finally, the following symbols are

used as de�ned below:

� � = diag(� d) is a vector containing the diagonal elements of the diagonal covariance

matrix, � d.

� � = N
� �

� ; 0; 1
�

(Normal PDF evaluated at �
� ).

� � =
R �

�
x= � inf N (x; 0; 1) dx (Normal CDF evaluated at �

� ).

� E[s] = � + � �
� .
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Using the above de�nitions, the integral in Equation (A.1) can be written as
Z

s
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(A.2)

whereC is a constant term that does not depend on the parameters or latent variables.

E step

If the prior on s was a full normal distribution, there would be no need for a variational

approach, and exact EM is possible. For a truncated normal distribution, however, the

mixing proportions, Q(r )Q(ojr ) cannot be calculated analytically except for the case

wheres is scalar, necessitating the diagonality constraint. Notethat if � was allowed to

be a full covariance matrix, the su�cient statistics of Q(sjo; r) are given by:

� r;o = ( I + � > (I � O)> 	 � 1(I � O)� )� 1� > (I � O)> 	 � 1xr � 1 (A.3)

� � 1
ro = ( I + � > (I � O)> 	 � 1(I � O)� ) (A.4)

where O is a diagonal matrix with elementsOi;i = oi . Furthermore, as shown in Sec-

tion 2.2.2, the optimal settings for� d and � d approximating a normal distribution with

full covariance � and mean � is

� d
optimal = � (A.5)

� d� 1

optimal = diag(� � 1) (A.6)

In the truncated case, equation (A.6) is still true. However, Equation (A.5) does not hold,

and � d
optimal cannot be found analytically. It was experimentally found that using equation
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(A.5), which is a good approximation when� > 2� , can be used to achieve meaningful

results, and it is signi�cantly more e�cient than using, for example, a gradient decent

method to compute the optimal� d.

The rest of the variational parameter can be optimized by di�erentiating the free

energy with the appropriate constraints to obtain the updates:

! r =
expf�F r;o g

P
o expf�F r;o g

(A.7)

� =
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P
o ! r F r;o �

P
o ! r log! r gP

r expf�
P

o ! r F r;o �
P

o ! r log! r g
(A.8)

M step

The parameter updates can be obtained through direct di�erentiation:
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where

~V[st jr; o] = E[st jr; o]]E[st jr; o]> +

diag

 
� r; o;t � >

r; o;t � ( � r; o ;t �� r; o ;t

� r; o ;t
)( � r; o ;t �� r; o ;t

� r; o ;t
)> �

( � r; o ;t �� r; o ;t �� r; o ;t

� r; o ;t
)( � r; o ;t �� r; o ;t �� r; o ;t

� r; o ;t
)>

!



Appendix A. Variational Updates for GenASAP 120

@F (Q; P)
@R� 1

r
=

X

t

X

i

� i;r;t

X

o

! i;r; o;t

h
� Rr +

x2
i;t

	 i Rr
�

x i;t � i E[st jr; o]
2	 i

i

Which can be solved by the quadratic equation where:

ar =
X

t

X

i

� i;r;t ! i;r; 0;t

br =
X

t

X

i

� i;r;t ! i;r; 0;t
x i;t � i E[st jr;o=0]

2	 i

cr = �
X

t

X

i

� i;r;t ! i;r; 0;t
x2

i;t

	 i
and

Rr =
� br +

p
b2

r � 4ar cr

2ar

(A.11)



Bibliography

[1] D. Abdueva, M. R. Wing, B. Schaub, and T. J. Triche. Experimental comparison

and evaluation of the a�ymetrix exon and u133 plus 2.0 genechip arrays. PLoS

ONE, 2(9):e913, 2007.

[2] B. Alberts, A. Johnson, J. Lewis, M. Ra�, K. Roberts, and P. Walter. Molecular

Biology of the Cell. Graland Publishing, 4th edition, 2002.

[3] W. Ao, J. Gaudet, W. J. Kent, S. Muttumu, and S. E. Mango. Environmentally

induced foregut remodeling by pha-4/foxa and daf-12/nhr.Science, 305:1743{1746,

2004.

[4] M. Ashiya and P. J. Grabowski. A neuron-speci�c splicingswitch mediated by an

array of pre-mRNA repressor sites: evidence of a regulatoryrole for the polypyrim-

idine tract binding protein and a brain-speci�c ptb counterpart. RNA, 3:996{1015,

1997.

[5] H. Attias, L. Deng, A. Acero, and J. Platt. A new method forspeech denoising and

robust speech recognition using probabilistic models for clean speech and for noise.

European Conf. on Speech Communication and Technology (Eurospeech), 2001.

[6] I. Aznarez, Y. Barash, O. Shai, D. He, J. Zielenski, L. C. Tsui, J. Parkinson,

B. Frey, J. M. Rommens, and B. Blencowe. A systematic analysis of intronic

sequences downstream of 5' splice sites reveals a widespread role for u-rich mo-

121



Bibliography 122

tifs and tia1/tial1 proteins in alternative splicing regulation. Genome Research,

18(8):1247{1258, 2008.

[7] T. L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization to

discover motifs in biopolymers.Proceedings of the Second International Conference

on Intelligent Systems for Molecular Biology, pages 28{36, 1994.

[8] T. L. Bailey and C. Elkan. The value of prior knowledge in discovering motifs

with meme. In Proceedings of International Conference of Intelligent Systemes in

Molecular Biology (ISMB), volume 3, pages 21{29, 1995.

[9] Y. Barash, G. Bejerano, and N. Friedman. A simple hyper-geometric approach for

discovering putative transcription factor binding sites.In Algorithms in Bioinfor-

matics: Proc. First International Workshop, number 2149 inLNCS, pages 278{293,

2001.

[10] Y. Barash, J. A. Calarco, Q. Pan, S. Chaudhry, O. Shai, W.Gao, B. J. Blencowe,

and B. J. Frey. Revealing the code governing tissue-regulated alternative splicing.

submitted.

[11] Y. Barash, G. Elidan, N. Friedman, and T. Kaplan. Modeling dependencies in

protein DNA binding sites. In In Proceedings of Research in Computational Biology

(RECOMB) , 2003.

[12] A. Barski, S. Cuddapah, K. Cui1, T.-Y. Roh, D. E. Schones, Z. Wang, G. Wei,

I. Chepelev, and K. Zhao. High-resolution pro�ling of histone methylations in the

human genome.Cell, 129(4):823{837, 2007.

[13] D. L. Black. Protein diversity from alternative splicing: a challenge for bioinfor-

matics and post-genome biology.Cell, 103(3):367{370, 2000.



Bibliography 123

[14] B. J. Blencowe. Exonic splicing enhancers: mechanism of action, diversity and role

in human genetic diseases.Trends in Biochemical Sciences, 25(3):106{110, 2000.

[15] M. Brudno, M. S. Gelfand, S. Spengler, M. Zorn, I. Dubchak, and J. G. Conboy.

Computational analysis of candidate intron regulatory elements for tissue-speci�c

alternative pre-mRNA splicing. Nucleic Acids Research, 29(11):2338{2348, 2001.

[16] M. J. Buck and J. D. Lieb. Chip-chip: considerations forthe design, analysis,

and application of genome-wide chromatin immunoprecipitation experiments. Ge-

nomics, 83(3):349{360, 2004.

[17] M. L. Bulyk. Computational prediction of transcription-factor binding site loca-

tions. Genome Biology, 5:201, 2003. review of transcpriton factors motif �nding.

[18] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic

DNA. Journal of Molecular Biology, 268:78{94, 1997.

[19] J. A. Calarco, Y. Xing, M. Caceres, J. P. Calarco, X. Xiao, Q. Pan, C. Lee, T. M.

Preuss, and B. J. Blencowe. Global analysis of alternative splicing di�erences

between humans and chimpanzees.Genes and Developement, 21:2963{2975, 2007.

[20] L. Cartegni, S. L. Chew, and A. R. Krainer. Listening to silence and understanding

nonsense: exonic mutations that a�ect splicing.Nature Genetics Review, 3:285{

298, 2002.

[21] T. A. Clark, C. W. Sugnet, and M. J. Ares. Genomewide alanysis of mRNA

processing in yeast using splicing speci�c microarrays.Science, 296:907{910, 2002.

[22] J. W. Cooley and J. W. Tukey. An algorithm for the machinecalculation of complex

fourier series.Mathematics of Computation, 19(90):297{301, 1965.

[23] X. Cui, M. K. Kerr, and G. A. Churchill. Transformations for cDNA microarray

data. Statistical Applications in Genetics and Molecular Biology, 2(1), 2007.



Bibliography 124

[24] P. Dagum and M. Luby. Approximating probabilistic inference in bayesian belief

networks is NP-hard. Arti�cial Intelligence , 60(1):141{153, 1993.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society, B

39:1{38, 1977.

[26] R.D. Dowell and S.R. Eddy. Evaluation of several lightweight stochastic context-

free grammars for RNA secondary structure prediction. 5:71, 2004.

[27] G. Drewes and T. Bouwmeester. Global approaches to protein-protein interactions.

Current Opinion in Cell Biololgy, 15(2):199{205, 2003.

[28] R. Dror, J. G. Murnick, N. J. Rinaldi, V. D. Marinescu, R. M. Rifkin, and R. A.

Young. Bayesian estimation of transcript levels using a general model of array

measurement noise.Journal of Computational Biology, 10(3{4):433{452, 2003.

[29] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent. Exonic expression

pro�ling using cDNA microarrays. Nature Genetics, 21:10{14, 1999.

[30] B. P. Durbin and D. M. Rocke. Variance-stabilizing transformations for two-color

microarrays. Bioinformatics, 20(5):660{667, 2004. VSN.

[31] E. Eskin and P. A. Pevzner. Finding composite regulatory patterns in DNA se-

quences.Bioinformatics, 18(90001):S354{S363, 2002.

[32] M. Fagnani, Y. Barash, J. Y. Ip, C. Misquitta, Q. Pan, A. L. Saltzman, O. Shai,

L. Lee, A. Rozenhek, N. Mohammad, S. Willaime-Morawek, T. Babak, W. Zhang,

T. R. Hughes, D. van der Kooy, B. J. Frey, and B. J. Blencowe. Functional coordi-

nation of alternative splicing in the mammalian central nervous system.Genome

Biology, 8(6):R108, 2007.



Bibliography 125

[33] W. G. Fairbrother, R. F. yeh, P. A. Sharp, and C. B. Burge.Predictive identi�cation

of exonic splicing enhancers in human genes.science, 297(9):1007{1013, 2002.

[34] M. Famulok and J. W. Szostak.In Vitro selection of speci�c ligand binding nucleic

acids. Angew. Chem., 31:979{988, 1992.

[35] A. V. Favorov, M. S. Gelfand, A. V. Gerasimova, D. A. Ravcheev, A. A. Mironov,

and V. J. Makeev. A gibbs sampler for identi�cation of symmetrically structured,

spaced DNA motifs with improved estimation of the signal length. Bioinformatics,

21(10):2240{2245, 2005.

[36] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, 3

edition, 1968.

[37] K. Frazer, L. Elnitski, D. Church, I. Dubchak, and R. Hardison. Crossspecies

sequence comparisons: a review of methods and available resources. Genome Re-

sources, 13:1{12, 2003. review of phylogenetic footprinting.

[38] B. J. Frey, R. Koetter, and N. Petrovic. Very loopy belief propagation for unwrap-

ping phase images.Neural Information Processing Systems 14 (NIPS), 2001.

[39] B. J. Frey, F. R. Kschischang, H. A. Loeliger, and N.Wiberg. Factor graphs and

algorithms. In Proceedings of the 35th Allerton Conference on Communications,

Control and Computing.

[40] B. J. Frey, N. Mohammad, Q. D. Morris, W. Zhang, M. D. Robinson, S. Mnaim-

neh, R. Chang, Q. Pan, E. Sat, J. Rossant, B. G. Bruneau, J. E. Aubin, B. J.

Blencowe, and T. R. Hughes. Genome-wide analysis of mouse transcripts using

exon microarrays and factor graphs.Nature Genetics, 37:991{996, 2005.

[41] M. C. Frith, U. Hansen, J. L. Spouge, and Z. Weng. Findingfunctional sequence

elements by multiple local alignment.Nucleic Acids Research, 32(1):189{200, 2004.



Bibliography 126

[42] A. E. Gelfand and A. F. M. Smith. Sampling-basedapproaches to calculating

marginal densities. Journal of the American Statistical Association, 85(410):398{

409, 1990.

[43] B. R. Graveley. Alternative splicing: increasing diversity in the proteomic world.

Trends in Genetics, 17:100{107, 2001.

[44] N. Hall. Advanced sequencing technologies and their wider impact in microbiology.

Journal of Experimental Biology, 210(9):1518{1525, 2007.

[45] F. R. Hampel. The in
uence curve and its role in robust estimation. Journal of

American Statistics Association, 69:383{394, 1974.

[46] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1):97{109, 1970.

[47] L. He and G. J. Hannon. MicroRNAs: small RNAs with a big role in gene regula-

tion. Nature Reviews Genetics, 5(7):522{531, 2004. Excellent review of miRNA.

[48] G. Z. Hertz and G. D. Stormo. Identifying DNA and proteinpatterns with sta-

tistically signi�cant alignments of multiple sequences.Bioinformatics, 15:563{577,

1999.

[49] J. Hoeting, D. Madigan, A. Raftery, and C. Volinsky. Bayesian model averaging.

Statistical Science, 14:382{401, 1999.

[50] J.C. Huang, Q.D. Morris, and B.J. Frey. Detecting microRNA targets by linking

sequence, microRNA and gene expression data. InInternational Conference on

Research in Computational Molecular Biology (RECOMB), 2006.

[51] W. Huber, A. von Heydebreck, H. Sultmann, A. Poustka, and M. Vingron. Variance

stabilization applied to microarray data calibration and to the quanti�cation of

di�erential expression. Bioinformatics, 18:S96{S104, 2002.



Bibliography 127

[52] J. D. Hughes, P. E. Estep, S. Tavasoie, and G. M. Church. Computational iden-

ti�cation of Cis-regulatory elements associated with groups of functionally related

genes in saccharomyces cerevisiae.Journal of Molecular Biology, pages 1205{1214,

2000.

[53] T. R. Hughes, M. Mao, A. R. Jones, J. Burchard, M. J. Marton, K. W. Shannon,

S. M. Lefkowitz, M. Ziman, J. M. Schelter, M. R. Meyer, S. Kobayashi, C. Davis,

H. Dai, Y. D. He, S. B. Stephaniants, G. Cavet, W. L. Walker, A.West, E. Co�ey,

D. D. Shoemaker, R. Stoughton, A. P. Blanchard, S. H. Friend,and P. S. Lins-

ley. Expression pro�ling using microarrays fabricated by an ink-jet oligonucleotide

synthesizer.Nature Biotechnology, 19:342{347, 2001.

[54] J. Y. Ip, A. Tong, Q. Pan, J. D. Topp, B. J. Blencowe, and K.W. Lynch. Global

analysis of alternative splicing during t-cell activation. RNA, 13:563{572, 2007.

[55] H. Itoh, T. Washio, and M. Tomita. Computational comparative analyses of al-

ternative splicing regulation using full-length cDNA of various eukaryotes. RNA,

10(7):1005{1018, 2004.

[56] S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for

the Dirichlet process mixture model. Journal of Computational and Graphical

Statistics, 13:158{182, 2004.

[57] S. Jain and R.M. Neal. Splitting and merging componentsof a nonconjugate

Dirichlet process mixture model. Technical Report 0507, University of Toronto,

Department of Statistics, 2005.

[58] K. B. Jensen and R. B. Darnell. CLIP: Crosslinking and immunoprecipitation

of in vivo RNA targets of RNA-binding proteins. Methods in Molecular Biology,

488:85{98.



Bibliography 128

[59] D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold. Genome-wide mapping

of in vivo protein-DNA interactions. Science, 316(5830):1497{1502, 2007.

[60] J. M. Johnson, J. Castle, P. Garrett-Engele, Z. Kan, P. M. Loerch, C. D. Armour,

R. Santos, E. E. Schadt, R. Stoughton, and D. D. Shoemaker. Genome-wide survey

of human alternative pre-mRNA splicing with exon junction microarrays. Science,

302:2141{2144, 2003.

[61] N. Jojic and B. Frey. Learning 
exible sprites in video layers. In Proc. of IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2001.

[62] M. I. Jordan, editor. Learning in Graphical Models. MIT Press, 1998.

[63] M. I. Jordan, Z. Ghahramani, T. Jaakkola, and Lawrence K. Saul. An introduction

to variational methods for graphical models.Machine Learning, 37(2):183{ 233,

1999.

[64] S. Klug and M. Famulok. All you wanted to know about SELEX. Molecular Biology

Reports, 20:97{107, 1994.

[65] A. Kr•amer. The structure and function of proteins involved in mammalian pre-

m(r)(n)(a) splicing. Annual Review of Biochemistry, 65:367{409, 1996.

[66] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2):498{519,

2001.

[67] X. Liu, D. L. Brutlag, and J. S. Liu. Bioprospector: discovering conserved DNA

motifs in upstream regulatory regions of co-expressed genes. Proceedings of Paci�c

Symposium on Biocomputing, pages 127{138, 2001.

[68] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. E. Darnell.

Molecular Cell Biology. Scienti�c American Press, 5th edition, 2004.



Bibliography 129

[69] K. D. MacIsaac and E. Fraenkel. Practical strategies for discovering regulatory

DNA sequence motifs.PLoS Computational Biololgy, 2(4):e36, 2006.

[70] D. Mackay. Information Theory, Inference, and Learning Algorithms. Cambridge

University Press, 2003.

[71] L. E. Maquat. Nonsense-mediated mRNA decay: splicing,translation and mrnp

dynamics. Nature Revviews Molecular Cell Biololgy, 5:89{99, 2004. NMD.

[72] J. C. Marioni1, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad. RNA-seq:

An assessment of technical reproducibility and comparisonwith gene expression

arrays. Genome Research, 18(9):1509{1517, 2008.

[73] D. H. Mathews and D. H. Turner. Prediction of RNA secondary structure by free

energy minimization. Current Opinion in Structural Biology, 16(3):270{278, 2006.

[74] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.Teller, and E. Teller.

Equations of state calculations by fast computing machines. Journal of Chemical

Physics, 21:1087{1092, 1953.

[75] L. Narlikar, R. Gordan, and A. J. Hartemink. A nucleosome-guided map of tran-

scription factor binding sites in yeast. PLoS Computational Biology, 3(11):e215,

2007.

[76] L. Narlikar, R. Gordan, U. Ohler, and A. J. Hartemink. Informative priors based

on transcription factor structural class improve de novo motif discovery. Bioinfor-

matics, 22(14):e384{e392, 2006.

[77] R. M. Neal. Probabilistic inference using Markov chainMonte Carlo methods.

Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto,

1993.



Bibliography 130

[78] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justi�es incremental,

sparse, and other variants. In M. I. Jordan, editor,Learning in Graphical Models,

pages 355{368. Cambridge, MIT Press, 1998.

[79] A. F. Neuwald, J. S. Liu, and C. E. Lawrence. Gibbs motif sampling: detection of

bacterial outer membrane protein repeats.Protein Science, 4(8):1618{1632, 1995.

[80] J. Nocedal and S. Wright.Numerical Optimization. Springer, 1999.

[81] IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Abbrevi-

ations and symbols for the description of conformations of polynucleotide chains.

European Journal of Biochemistry, 131:9{15, 1982. nomenclature starndards.

[82] Q. Pan, M. A. Bakowski, Q. D. Morris, W. Zhang, B. J. Frey,T. R. hughes, and

B. J. Blencowe. Alternative splicing of conserved exons is frequently species speci�c

in human and mouse.Trends Genent., In Press, 2005.

[83] Q. Pan, A. L. Saltzman, Y. K. Kim, C. Misquitta, O. Shai, L. E. Maquat, B. J. Frey,

and B. J. Blencowe. Quantitative microarray pro�ling provides evidence against

widespread coupling of alternative splicing with nonsense-mediated mRNA decay

to control gene expression.Genes and Development, 20:153{158, 2006.

[84] Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe. Deep surveying of

alternative splicing complexity in the human transcriptome by high-throughput

sequencing.Nature Genetics, 40:1413{1415, 2008.

[85] Q. Pan, O. Shai, C. Misquitta, W. Zhang, N. Mohammad, T. Babak, H. Siu, T. R.

Hughes, Q. D. Morris, B. J. Frey, and B. J. Blencowe. Revealing global regula-

tory features of mammalian alternative splicing using a quantitative microarray

platform. Molecular Cell, 16(6):929{941, 2004.



Bibliography 131

[86] G. Pavesi, G Mauri, and G. Pesola.In silico representation and discovery of tran-

scription factor binding sites. Brie�ngs in Bioinformatics , 5(5):217{236, 2004.

[87] G. Pavesi, G. Mauri, and G. Pesole. An algorithm for �nding signals of unknown

length in DNA sequences.Bioinformatics, 17:S207{S214, 2001.

[88] G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole. Weeder web: discovery of

transcription factor binding sites in a set of sequences from co-regulated genes.

Nucleic Acids Research, 32:W199{W203, 2004.

[89] G. Pavesi, P. Mereghetti, F. Zambelli, M. Stefani, G. Mauri, and G. Pesole. Mod

tools: regulatory motif discovery in nucleotide sequencesfrom co-regulated or ho-

mologous genes.Nucleic Acids Research, 34:W566{W570, 2006.

[90] J. Pearl.Probabilistic Reasoning in Intelligent Systems. Kaufmann, 2 edition, 1988.

reference for Bayes net, Bayesian networks.

[91] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

recipes in C (2nd ed.): the art of scienti�c computing. Cambridge University Press,

New York, NY, USA, 1992.

[92] E. Purdom, K.M. Simpson, M.D. Robinson, J.G. Conboy, A.V. Lapuk, and T.P

Speed. FIRMA: a method for detection of alternative splicing from exon array

data. Bioinformatics, 24(15):1707{1714, 2008.

[93] J. Qian, Y. Kluger, H. Yu, and M. Gerstein. Identi�cation and correction of spurious

spatial correlations in microarray data.Biotechniques, 35(1):42{44, 46, 48, 2003.

[94] E. Redhead and T. L. Bailey. Discriminative motif discovery in DNA and protein

sequences using the deme algorithm.BMC Bioinformatics, 8:385, 2007.

[95] D. M. Rocke and B. Durbin. A model for measurement error for gene expression

arrays. Journal of Computational Biology, 8(6):557{569, 2001.



Bibliography 132

[96] D. M. Rocke and B. Durbin. Approximate variance-stabilizing transformations for

gene-expression microarray data.Bioinformatics, 19(8):966{972, 2003.

[97] F. P. Roth, J. D. Hughes, P. W. Estep, and G. M. Church. Finding DNA regulatory

motifs within unaligned noncoding sequences clustered by whole-genome mRNA

quantitation. Nature Biotechnology, 16(10):939{945, 1998.

[98] D. Rubin and D. Thayer. EM algorithms for ml factor analysis. Psychometrika,

47(1):69{76, 1982.

[99] R. Shachter. Bayes-ball: The rational pasttime (for determining irrelevance and

requisite information in belief networks and in
uence diagrams). Uncertainty in

Arti�cial Intelligence (UAI) , pages 480{487, 1998.

[100] O. Shai, Q. D. Morris, B. J. Blencowe, and B. J. Frey. Inferring global levels of

alternative splicing isoforms using a generative model of microarray data. Bioin-

formatics, 22:606{613, 2006.

[101] S. Sinha and M. Tompa. Discovery of novel transcription factor binding sites by

statistical overrepresentation.Nucleic Acids Research, 30(24):5549{5560, 2002.

[102] S. Sinha and M. Tompa. YMF: a program for discovery of novel transcription

factor binding sites by statistical overrepresentation. Nucleic Acids Research,

31(13):3586{3588, 2003.

[103] A. D. Smith, P. Sumazin, and M. Q. Zhang. Identifying tissue-selective tran-

scription factor binding sites in vertebrate promoters.Proceedings of the National

Academy of Sciences, 102(5):1560{1565, 2005.

[104] J. A. Snyman. Practical Mathematical Optimization: An Introduction to Basic

Optimization Theory and Classical and New Gradient-Based Algorithms. Springer,

2005.



Bibliography 133

[105] H. Steen and M. Mann. The ABC's (and XYZ's) of peptide sequencing. Nature

Reviews Molecular Cell Biology, 5(9):699{711, 2004.

[106] G. D. Stormo. DNA binding sites: representation and discovery. Bioinformatics,

16:16{23, 2000.

[107] C. W. Sugnet, K. Srinivasan, T. A. Clark, G. O'Brien, M. S. Cline, H. Wang,

A. Williams, Kulp D, J. E. Blume, D. Haussler, and M. Ares Jr. Unusual intron

conservation near tissue-regulated exons found by splicing microarrays. Public

Library of Science (PLoS) Computational Biololgy, 2(1), 2006.

[108] G. Thijs, K. Marchal, M. Lescot, S. Rombauts, B. De Moor, P. Rouz, and

Y. Moreau. A Gibbs sampling method to detect over-represented motifs in the up-

stream regions of coexpressed genes.Journal of Computational Biology, 9(2):447{

464, 2002.

[109] L. Tierney. Exploring posterior distributions usingmarkov chains. In Computer

Science and Statistics: 23rd Symposium on the Interface, pages 563{570, 1991.

[110] L. Tierney. Markov chains for exploring posterior distributions. Annals of Statistics,

22(4):1701{1728, 1994.

[111] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E.Eskin, A. V. Favorov,

M. C. Frith, Y. Fu, W. Kent, V. J. Makeev, A. A. Mironov, W. S. No ble, G. Pavesi,

G. Pesole, M. Rgnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vanden-

bogaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing computational

tools for the discovery of transcription factor binding sites. Nature Biotechnology,

23:137{144, 2005.

[112] J. Ule, A. Ule, J. Spencer, A. Williams, J.-S. Hu, M. Cline, H. Wang, T. Clark,

C. Fraser, M. Ruggiu, B. R. Zeeberg, D. Kane, J. N. Weinstein,J. Blume, and



Bibliography 134

R. B. Darnell. Nova regulates brain-speci�c splicing to shape the synapse.Nature

Genetics, 37:844{852, 2005.

[113] J. van Helden, B. Andr, and J. Collado-Vides. Extracting regulatory sites from

the upstream region of yeast genes by computational analysis of oligonucleotide

frequencies.Journal of Molecular Biology, 281(5):827{842, 1998.

[114] J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory ele-

ments in intergenic sequences by analysis of spaced dyads.Nucleic Acids Research,

28(8):1808{1818, 2000.

[115] J. von Neumann. Various techniques used in connectionwith random digits. Na-

tional Bureau of Standards Applied Math Series, 12:36{38, 1951.

[116] Y. Weiss and E. H. Adelson. A uni�ed mixture framework for motion segmenta-

tion: incorporating spatial coherence and estimating the number of models.IEEE

conference on Computer Vision and Pattern Recognition (CVPR), pages 321{326,

1996.

[117] D. L. Wilson, M. J. Buckley, C. A. Helliwell, and I. W. Wilson. New normalization

methods for cDNA microarray data.Bioinformatics, 19(11):1325{1332, 2003.

[118] C. T. Workman and G. D. Stormo. ANN-spec: A method for discovering tran-

scription factor binding sites with improved speci�city. Proccedings for the Paci�c

Symposium for Biocomputing, 2000.

[119] E. Xing, W. Wu, M. Jordan, and R. Karp. Logos: A modular Bayesian model for

de novomotif detection. Journal of Bioinformatics and Computational Biology,

2(1):127{154, 2003.



Bibliography 135

[120] G. W. Yeo, E. Van Nostrand, D. Holste, T. Poggio, and C. B. Burge. Identi�-

cation and analysis of alternative splicing events conserved in human and mouse.

Procceedings of the National Academy of Science (PNAS), 102(8):2850{2855, 2005.

[121] W. Zhang, Q. D. Morris, R. Chang, O. Shai, M. A. Bakowski, N. Mitsakakis, N. Mo-

hammad, M. D. Robinson, R. Zirngibl, E. Somogyi, N. Laurin, E. Eftekharpour,

E. Sat, J. Grigull, Q. Pan, W. T. Peng, N. Krogan, J. Greenblatt, M. Fehlings,

D. van der Kooy, J. Aubin, B. G. Bruneau, J. Rossant, B. J. Blencowe, B. J. Frey,

and T. R. Hughes. The functional landscape of mouse gene expression.J. Biology,

3(21), 2004.

[122] X. H-F. Zhang and L. A. Chasin. Computational de�nition of sequence motifs

governing constitutive exon splicing.Genes and Development, 18(11):1241{1250,

2004.

[123] H.-L. Zhou and A. P. Baraniak amd H. Lou. Role for fox-1/fox-2 in mediating the

neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA

processing.Molecular and Cellular Biology, 27(3):830{841, 2007.

[124] Q. Zhou and W. H. Wong. CisModule:De novodiscovery ofcis-regulatory modules

by hierarchical mixture modeling.Proceedings of the National Academy of Sciences,

101(33):12114{12119, 2004.

[125] G. Zweig and S. Russel. Probabilistic modeling with Bayesian networks for auto-

matic speech recognition.Australian Journal of Intelligent Information Processing,

5(4):253{260, 1999.


