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Alternative splicing, the process by which a single gene mayde for similar but di erent
proteins, is an important process in biology, linked to deVepment, cellular di erentia-
tion, genetic diseases, and more. Genome-wide analysis léraative splicing patterns
and regulation has been recently made possible due to newidproughput techniques
for monitoring gene expression and genomic sequencing. Jthesis introduces two algo-
rithms for alternative splicing analysis based on large mrcarray and genomic sequence
data. The algorithms, based on generative probabilistic naels that capture structure
and patterns in the data, are used to study global propertiesf alternative splicing.

In the rst part of the thesis, a microarray platform for monitoring alternative splicing
is introduced. A spatial noise removal algorithm that remoes artifacts and improves data
delity is presented. The GenASAP algorithm (generative mdel for alternative splicing
array platform) models the non-linear process in which taejed molecules bind to a
microarray's probes and is used to predict patterns of alteative splicing. Two versions
of GenASAP have been developed. The rst uses variational ppximation to infer the
relative amounts of the targeted molecules, while the seabimcorporates a more accurate
noise and generative model and utilizes Markov chain Montea@lo (MCMC) sampling.

GenASAP, the rst method to provide quantitative predictions of alternative splicing

patterns on large scale data sets, is shown to generate useiud precise predictions based



on independent RT-PCR validation (a slow but more accurate gproach to measuring
cellular expression patterns).

In the second part of the thesis, the results obtained by GerBAP are analysed to
reveal jointly regulated genes. The sequences of the genes examined for potential
regulatory factors binding sites using a new motif nding ajorithm designed for this
purpose. The motif nding algorithm, called GenBITES (geneative model for binding
sites) uses a fully Bayesian generative model for sequencasd the MCMC approach
used for inference in the model includes moves that can e asly create or delete motifs,
and extend or contract the width of existing motifs.

GenBITES has been applied to several synthetic and real datets, and is shown
to be highly competitive at a task for which many algorithms &eady exist. Although
developed to analyze alternative splicing data, GenBITESutperforms most reported

results on a benchmark data set based on transcription data.
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Chapter 1

Introduction

The last decade has seen the emergence of large biologicéhskets, providing new oppor-
tunities and challenges to researchers in the eld, and re@ing new analysis tools to be
developed. New technologies now allow biologists to seqoerentire genomes consisting
of billions of nucleotides, simultaneously measure the engssion of thousands of genes,
probe the properties of protein interactions, analyze therptein content of samples, and
more [27,37,69, 105, 121]. The wealth of data generated by#ie methods, however, can
be overwhelming, as manual analysis traditionally emplogeto biologists is impractical.
Many analysis tools using concepts from statistics, dynamprogramming, and machine
learning have been proposed and successfully utilized imidies involving large biological

datasets.

Machine learning o ers tools and approaches to data analgsthat have been partic-
ularly e ective when analyzing biological data. Both superised and unsupervised learn-
ing methods have been applied successfully to gene exp@ssand genomic sequence
datasets. In turn, computational biology has motivated resarch in machine learning

[13, 40, 119].

The di culties facing computational biologists stem from unknown noise character-

istics, non-linear and non-Gaussian noise properties ofdhdata, the large size of the
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data sets (some data sets contain hundreds of gigabytes),dathe lack of ground truth
[95, 111]. In computer vision and speech processing, twodr@onal applications of ma-
chine learning, the challenge is to develop algorithms to germ tasks that humans do
naturally: recognize and track objects and scenes, detemei spatial orientation in 3D
environments, interpret natural languagegtc. For example, it is straightforward, in prin-
ciple, to determine if a speech recognition algorithm is prming well. However, when
analyzing microarray data for co-regulation patterns, thee is often no obvious approach
to validation. Verifying predictions using traditional wet-lab experiments is often tedious
and time consuming, and is therefore carried out only on a sihhacale.

This thesis focuses on the application of probabilistic gerative models to large scale
analysis of alternative splicing. Generative models attgphto nd patterns by describing
the hidden causes underlying the observed data [62, 70]. Beehidden causes may have
real-world correspondences, such as a chair giving rise teetpixels in the image, or the
abundances of transcripts binding to probes on the microay, or they may be abstract
concepts, such as grammatical structures in a speech redagd or commonly occurring
motifs in a DNA sequence. Generative models are well suited biological data sets,
as they can be used with arbitrary noise models. Additionall they alleviate problems
arising from lack of ground truth by modeling all the data, irtluding unlabeled data and
hidden variables.

Alternative splicing (Section 2.4) is a phenomenon in which single gene may give rise
to multiple mRNA transcripts, enzymes and proteins. It is anmportant phenomenon in
molecular biology, occuring in over 85% of human genes [8&pr this thesis, two types

of alternative splicing data were available for analysis:

Microarray Data. This data contains measurements of regignwithin the poten-
tially expressed transcripts. Given these measurement$ig goal is to quantitatively
infer the relative abundances of alternative transcriptsyhich would lead to con-

clusions about regulation of alternative splicing and rew the role of alternative
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splicing in gene regulation, species di erentiation, evation, and more.

Genomic sequence Data. Using the inferences from the mianag data, analysis
of the sequences involved in alternative splicing regulath would reveal potential

binding sites for tissue speci ¢ regulatory factors.

Each dataset presents its own unigue challenges. The micray data contains signal
dependent noise, cross-hybridization (transcripts bindg to probes not designed to tar-
get them), spatially dependent noise patterns, and probe waation distortion [30, 53].
The DNA sequence data contains a mixture of protein-codingnd non-coding regions,
and sparse features buried in very long intronic sequencdsuQdreds of thousands nu-
cleotides). Predicting binding sites of regulatory facta successfully requires accounting

for di ering noise models, and properties of binding sitesidi erent regions.

1.1 A Taste of Things to Come

Quantitative estimates of relative abundance of transcrig require both a new microaray
design and an appropriate algorithm. At its conception, GeASAP (Section 3.3) was the
rst algorithm to successfully make meaningful quantitatve predictions about alternative
splicing properties based on microarray data. Previous ampts had been concerned
with qualitative predictions (i.e. which transcripts are detected, regardless of quantity).
As is shown in Section 3.4.3, GenASAP and its variants remathe state of the art in
predicting alternative splicing levels in biological samps, and have led to important
discoveries about the role and e ect of alternative splici in the cell.

In contrast to the problem of large scale quantitative analsis of alternative splicing
patterns, the other problem studied here, motif nding, is along standing problem for
which many algorithms have been proposed. Unfortunatelyjtarnative splicing sequence
data does not conform to the assumptions underlying most midt nding algorithms.

For example, alternative splicing seems to be regulated byamy enzymes and proteins,
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working both cooperatively and antagonistically, and manypotential binding sites are
expected to be present in a single, short sequence segmentldi#fionally, these binding

sites tend to be much shorter than transcription binding sis, and can be found in both
coding and non-coding regions. The algorithm presented ihis thesis, GenBITES, was
designed to deal with the particulars of alternative splicig data, but has shown remark-
able success on transcription data as well. GenBITES has Imesompared to some of the
most popular algorithms on a transcription benchmark datset and has outperformed
all previously examined algorithms in some or all evaluatio criteria. As no alterna-

tive splicing benchmark exists, GenBITES was applied to a wmel alternative splicing

genomic sequence data based on GenASAP predictions, ndisgveral known motifs,
and accurately predicting important regions in a detailed xample used for validation.

This thesis is organized as follows: In Chapter 2, the essmttbackground required
for understanding the thesis is covered. This chapter contes two parts that review
the necessary computational and biological background. rst, probabilistic generative
models and the algorithms used to infer and learn using theseodels are reviewed.
The second part of the chapter discusses the necessary mali@cbiology, including the
process of alternative splicing and experiments used to ggate the data and validate
predictions and results.

Chapter 3 introduces the microarray platform used for glodaanalysis of alternative
splicing and the associated algorithms. In its original irarnation as a variational method,
GenASAP was the rst successful attempt to quantitatively pedict alternative splicing
levels based on microarray data. In Chapter 4, GenBITES, a wel algorithm for motif
detection, is introduced. GenBITES is applied to genomic geence data to nd potential
binding sites for splicing factors. Finally, Chapter 5 proides discussion and outlines a
few possible future directions. Figure 1.1 outlines posstbapproaches to reading the

thesis based on the variety of readers' backgrounds and ingsts.
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Figure 1.1: How to read the thesis

. Depending on the reader's background and inter-

est, there are di erent sections one may wish to focus on. Adinformatician interested

in how GenBITES detect novel motifs in genomic sequence datshould review the ma-

chine learning background, but can skip ahead to the algohin in Chapter 4 (dotted line

on left). A machine learning researcher who may want to seewdenASAP handles the

noise properties of microarrays may wish to review the bialaal background and focus

on GenASAP while skipping GenBITES (dashed line on right). ©course, the thorough

reader interested in applications of graphical models to dliogical data would take the

direct path, perusing all chapters.



Chapter 2

Background

To e ectively study computational biology, it is necessaryto understand the biological

mechanisms as well as the computational tools employed. Adtough comprehension of
the biology is vital in developing meaningful and e ective rodels. This chapter reviews
generative models and the various probabilistic inferenead machine learning algorithms
that may be applied to them. In Section 2.4, the focus shiftsotthe necessary molecular

biology background for understanding the remainder of thithesis.

2.1 Bayesian Networks and Generative Models

Probabilistic models have proven to be an e ective tool in mehine learning in recent
years, bringing powerful new algorithms to common problemas vision, speech, compu-
tational biology, and more [5, 18, 40, 100, 116, 125]. A stasudl approach for probabilistic
models is to represent observed data as the result of one ormrmanderlying latent causes.
This type of model is referred to as generative model For example, a video segment
may be the result of a stationary background image and sevéfareground image cutouts
moving across it [61]. The observed data (video or image seqge) is represented as ob-
served random variables, and the unobserved underlying s are represented as latent

random variables. In the example above, the latent random viables may represent the
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image cutouts as well as positional and angular transformans.

A useful visual tool for representing generative models ib¢ Bayesian network [90]. A
Bayesian network is a directed acyclic graph that representhe conditional dependencies
in the model, as shown in Figure 2.1a. Each node in the graphpresents a variable
(or a class of variables), where shaded nodes are observedatdes, and clear nodes are
unobserved variables. A directed edge from nodeto nodeB represents the distribution
P(BjA). A model represented by a Bayesian network can have its prability distribution

factored as
Y

p(x) = p(xijx ) (2.1)
i
wherex . are the parents ofx;, and nodes without parents are marginally independent.
Many generative models can be represented by a particularpg of Bayesian network,
where the leaf nodes are the observed variables and root amdernal nodes are the
unobserved variables. The unobserved variables represdmtden causes, which, were
they known, would describe how the observed data were gened
The Bayes-Ball algorithm [99] can be used to determine conidinal independencies in
a Bayesian network. Two nodes in the network are independeifithere is no possible path
by which the Bayes-ball can travel from one node to another g the rules described
in Figure 2.1b-d. Each variable allows to pass through it if @d only if the variable is
unobserved and the Bayes-ball passes through it from head tail, from tail to head,

or from head to head, or the variable (or any of its descendas)tis observed and the

Bayes-ball passes through it from tail to tail.

2.1.1 Example: Factor Analysis

The example of factor analysis is useful for grounding the stiussion of Bayesian net-
works and the relevant algorithms. The factor analysis modlés shown as a Bayesian

network in Figure 2.2. The observed vector 2 RN is assumed to be a high dimensional
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Figure 2.1: Bayesian Networks and the Bayes-Ball algorithm. (@) A sample

Bayesian network. Unshaded nodes represent hidden varieb] shaded nodes repre-
sent observed variables, and edges represent conditionapéndencies. This partic-
ular network represents a distribution that can be factoredas P(A;B;C;D;E) =
P(A)P(BJA)P(CjA;B)P(DJC)P(E]C) (b) A node with two (or more) ancestors blocks
the ball if it is unobserved, but lets the ball through if it is observed. (c) A node with two
(or more) descendants lets the ball through if unobservedubblocks it if it is observed.
(d) An unobserved node lets the ball pass from its parents tasi children and from its
children to its parents, but an observed node does not. Two rables in the model are
conditionally independent if there is no path by which the Bges-ball may travel from

one node to the other.
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representation of the low dimensionay 2 RM, whereN > M , with some added noise:

z= y+ +

_ _ N _ (2.2)
or in scalar notation z = iyt i+t i 8i=1:N;
j=1

where is an added shift, 2 RN M is the factor loading matrix, and is the added
noise.

In this model, and  are parameters of the modelz are the observed data, and
y are the latent variables. The Bayesian network in Figure 2,2vhile useful in provid-
ing a visualization of the interactions of the model's elenmgs, is not su cient to fully
describe the model. The network shown in Figure 2.2b, makepparent that the factor

analysis model can be represented &z;y) = @ P(y;) Q P(z]y), indicating that the

j=1 i=1
i andy; are marginally independent. However, these distributionsemain to be de ned.
The typical factor analysis model assumes a zero-mean uniede Gaussian prior with

standard deviation of 1 fory; and Gaussian white noise:

P(yj)=N(y,-;0;1):912:eyzj 8 =1:::M; (2.3)
P(ziy)= N(xi; iy+ i1 1)= p%e S siz1ioN (24)

In the following sections, it will be shown how the posteriodistribution of the hidden

variables may be inferred, and the model's parameters estited.

2.2 Inference in Bayesian Networks

A Bayesian network provides a framework under which the obsed data may be ex-
plained by latent causes in the form of hidden variables. lafence in this context is the
process by which the posterior distribution of the hidden wva@ables, x'"9, given the visi-
ble data, x™V9, and the model's parameters, , is computed. DeterminingP (x'"%jx"V9; )

is in general an NP-hard problem [24]. Exact inference may rsetimes be carried out
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(@) (b)

Figure 2.2: Bayesian network for a factor analysis model. (a) The Bayesian
network represented with pooled variables where single neslrepresent the vectory
and z. (b) The elements of the vectory and z split are represented by a single node per

scalar. Thea priori independence of the elements of the vectgris now explicit.

e ciently due to topology, as in tree structured networks, @ when there is a closed form
analytical integral, as with the factor analysis model (Seéon 2.1.1). When exact infer-
ence is intractable, however, an approximate method can besed, such as variational
inference [63, 78], loopy belief propagation [38, 66], or kte Carlo sampling algorithms
[42, 46, 77].

2.2.1 Exact Inference and Bayes' Theorem

In theory, any posterior distribution can be computed using@ayes' Theorem:

P(vag; thg) DP (vag; thg)

xfhg

P (x""9jx"V9) = (2.5)
where the summation symbol is used to signify both summing ewvdiscrete variables and
integrating over continuous variables.

Exact inference methods compute the posterior distributio of the latent variables by
leveraging the structure of the network. One can use the famtzation of the joint prob-

ability distribution and the sum-product algorithm to e ci ently integrate over variables
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in the model [38, 39]. For example, consider a distributiorhtat factors as follows:
P(A;B;C;D)= P(A)P(BjA)P(CjB)P(DjC): (2.6)

Suppose the distribution of interest if? (AjD), which requires the computation ofP (A; D)

and P(D). These values may be computed as follows

X X
P(A;D) = P(A;B;C;D)
B C
X X
= P(A)P(BjA)P(CjB)P(DjC) (2.7)
B C
X X
=P(A) P(BjA) P(CjB)P(DjC)
B C
X X X
P(D) = P(A;B;C;D)
A B C
X X X
- P(A)P(BjA)P(CjB)P(DjC) (2.8)
A B C
X X X
= P(A) P(BjA) P(CjB)P(DjC):
A B C

The astute observer would notice that many of the computatios in Equation (2.7) are
repeated in Equation (2.8). An algorithm known as belief pqeagation, which abstracts
the repeated computations into messages passed in a netwaréin be used to e ciently

compute conditional and marginal distributions in tree stuctured networks [66].

Inference in Factor Analysis

In the factor analysis model (Section 2.1.1), e cient exacinference can be carried out
due to the existence of a closed form integral. In vector andatrix notation, the joint
probability is given by

. 1 1> 1 1 > 1
P(z;y) = P(y)P(zjy) = We 2¥ yme 2z ) (z y); (2.9)

where is assumed to be equal t@. In Section 2.3.1 it will be shown how to estimate

and properly account for 6 0.
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Rearranging Equation (2.9) yields

P(zy)/ e 3 (x> 5 2> 2270+ > Ny (+ 7 H 1t

Z>( 1 1(|+ > 1) > 1)2

=N(y;(l+ = Y P s 7)Y (2.10)
N(Z,O,( 1 l(|+ > 1) > 1) l)
=P(yj2)P(2);
and the posterior distribution of the latent variables,P(yjz), is revealed to be a Gaussian
distribution with mean (1+ > ) ! > zandvariance (+ > ') L
The ability to analytically manipulate Gaussian distributions to extract expected

values and variances, which is su cient to completely desdre Gaussian distributions,

makes them particularly attractive when constructing prolabilistic models.

2.2.2 Variational Approximations

When exact inference is intractable to perform, an approxiate method, such as varia-
tional inference [63], must be used. Here, a known, tractaland parameterized distri-
bution Q(x""9) is used to approximate the exact posteriorP (x'"9jx"V9). The parameters
of Q(x'9), called the variational parameters, should be set so tha) provides a good
approximation.

A standard \distance" function used when comparing two prodbility distributions is
the Kullback-Leibler (KL) divergence. The KL-divergence letween distributions Q and
P is given by

Q(x).

X
DQKP)=  Qlog 55 (2.11)

KL divergence, however, is not a true distance measure as & mot symmetric, D(Q k
P) 6 D(P k Q), and it does not satisfy the triangle inequality. The asymratry of the
KL-divergence is illustrated in Figure 2.3. In Section 2.3.another motivation for using

the KL-divergence is discussed.



Chapter 2. Background 13

Q(x) =argmin D(Q k P) Q(x) =argmin D(P k Q)
0.5 © 0.5 °
0.4r o Q(x) 0.4t
0.3 . " 0.3r
P P(x) P(X)

0.2r 0.2

0.1r 0.1r

0 5 10 15 20 0

(@) (b)

20

Figure 2.3: Q distribution approximation to P. The bimodal distribution, P, in
solid line, is approximated with a Gaussian distributionQ, in dotted line. (a) The
approximation minimizesD (QkP), and captures only one of the modes d&?. (b) The
approximation minimizes D (P k Q), and smoothes the two modes into a single central

one

To perform variational approximation, the variational parameters should be set so as
to minimize the KL-divergence betweerQ(x'"9) and P (x'"9jxV9). However, P (x'"9jx'V9)
is not known, or exact inference would be feasibl® (x'"9; x'¥9), is available, and, in the
case of a graphical model, has a simpli ed form, in which ca®yQ(x'"9) k P (x'"9; x"V9))

can be minimized:;

argmin D (QU™) kP (¢Mx*9) = argmin  Q(x™)log = X
Q hg P(thgjvag)
X Q(xhe) X 1
= 1 fhg A fhg o+
argmin . Q(x )Iogp(xfhgjvag) Q(x )IogP(vag)
xtng xfhg

=argmin D (Q(x'"9) k P (x""9; x"V9)):
Q
(2.12)
D(Q(x'"9) k P(x™v9;x™9)) is called the free energy of the modelF, and has the

same optimal setting of the variational parameters as the Kldivergence,D (Q(x""9) k

P (x""9jx"v9)) since logP (x¥9) is constant with respect toQ.
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Variational Inference in the Factor Analysis Model

Although exact inference in the factor analysis model is fedble as shown in Section 2.2.1,
it will be used to demonstrate how variational inference isagried out.

Let Q(y) assume the following form

W 1 ) 2
Q(y) = pz_l—e 270 (2.13)

j=1 i
Here, the distribution's mean and variance, ; and ? respectively, are the variational
parameters. This factorized form ofQ(y), where the variablesfy;g are assumed to be
independent in the posterior, is common and is referred to asnean- eld approximation.

The free energyF, is given by:
Z

Q(y)
F= Q(y)lo
%0 )
¥ X! P 1 ,
= Qw)  log(2 ) 55 )
Yj=1 i=1 j #
Z y X yp X p X )
Q(yj) Iog 2 E"' |0g 2 i —'(ZI ij yj)
Yij=1 j=1 i=1 ' j=1
" P > ™
NG 1 2+ 2 N Zi o 0 +j=l PiF
= e grog v a2 0 2,
j=1 i=1
or in vector form
= log ~1 M?+ ++N5Iog(2j [)as
:_ZL(Z> 1Z 22> 1 +Tr( > 1 )+ > > 1 )
(2.14)
wherel is a column vector of 1's, is a diagonal matrix such that ; = ;and ; =0

fori 6 j, and Tr() is the trace function'. Note that the vector form above is valid

because is a diagonal matrix (.e. ; =0for i & j). The free energy can be minimized

P
1The trace of a matrix is the sum of its diagonal elements. ForA 2 RN N Tr(A) = iNzl a .
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by iteratively setting its partial derivatives to zero:

Q — > lZ+ > 1 =0
@ (2.15)
= (I + > 1) 1 > 1Z
X
Q = i + J + I ) = 0
@j j i=1 i
, 1 (2.16)
i L ™ 2
+ '_

A few interesting observations can be made about the optimahriational parameters.
The mean of the approximation given in Equation (2.15) is id#ical to the mean of
the true posterior given in Equation (2.10). The precisionifverse of variance) the ap-
proximation given in Equation (2.16) are the diagonal elenmés of the inverse covariance
matrix of the true posterior given in Equation (2.10). If theposterior was approximated
using a full Q distribution (i.e. one with a full covariance matrix, rather than a diagonal
one), the true posterior would have been recovered using shapproach. Finally, note
that by using vector notation, a closed form solution to was obtained. If scalar notation
was used,M equations with M unknowns would have been obtained, and much more
work would have to be done to compute the closed form solutiofVhen using variational
inference, it is therefore a good idea to try both vector andcalar notations to ensure

that simple expressions are used.

2.2.3 Sampling

Variational inference methods can be powerful analyticabbls for approximating poste-
rior distributions. However, situations in which they do na present a viable option often
arise. For example, the joint distribution, P (x"V9; x""9), may not yield an analytically
tractable free energy. Alternatively, it may be important to maintain many dependencies
between hidden variables, making both exact and variatiohanference intractable. In

these situations, sampling methods [42, 77] may be more appriate.
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Sampling from the posterior distribution can provide infomation about the posterior
distribution and enable integration over some or all of thealtent variables. For instance,

the expected value of a random variablX given by

X
EIX]= xP[X = x] (2.17)

X

may be estimated from sample values by simply taking the sangpmean:
1 X
E[X] — Xi; (2.18)
N
i=1
wherex; is the i™" sample. Other statistics, such as mode, variance, and cdaon, may
be similarly estimated using the sample mode, sample varieg, and sample correlation.
In general, random number generation methods start by gersging psuedo-random
uniform distributions. Various methods exist for convertng this uniform distribution to

more interesting distributions.

Transformation Methods

Transformation methods provide simple and e cient algorihms for generating random
distributions [91]. Unfortunately, their use is limited to a few simple distributions.
Nonetheless, they form the backbone of most other samplinggarithms.

As an example, a uniform random variablelJ 2 [0; 1), can be transformed into an

exponential random variable,V, by letting V = logU:
f(u _ 1 1

f(v)= - - = - = —
V) jowj j uly e

wheref (v) and f (u) are the probability density functions (PDF) of v and u respectively,

=eV; (2.19)

and gqu) is the rst derivative of the transformation applied to u.

Rejection Sampling

Rejection sampling is a useful approach when transformatianethods alone cannot be
used to generate the desired distribution. With rejectionampling, samples are rst ob-

tained from a surrogate distribution with densitiesf (v) Cf (v) 8v for some constant
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Figure 2.4: Rejection sampling. A surrogate Gamma distributionf (v) (dashed line)
is used to sample from the desired distributiori (v) (solid line). Samples are accepted

with probability f (v)=Cf (v) and rejected otherwise.

C. Samples generated from the surrogate distributiorf, (v) are accepted with proba-

bility $&, and rejected otherwise. The process is repeated until a scient number of

samples are obtained [115].

Markov Chain Monte Carlo Sampling

Possibly the most powerful sampling algorithms fall into tle category of Markov chain
Monte Carlo (MCMC) methods. These algorithms can sample fro a wide range of
distribution, but have rigorous requirements that must be dhered to [77].

A Markov chain is a series of random variables (states}©®;x®:x®:::: for which
the probability distribution of variable x( is completely determined by then preceding
states, wheren is the order of the chain. For sampling purposes it is su ciento consider

rst order Markov chains:
P(x®jx@;x®; ;%0 Dy = p(xOjxt Dy: (2.20)

The marginal distribution at time i is denoted asP;(x). The transition probability from

state x at time i to state x°at time i + 1 is given by Q;(x4x) = P (x(*9 jxM). A Markov
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chain is said to be homogeneouss8f; Q;(x4x) = Q(xYx). The distribution of state x(*1)

can be found by applying the transition probability

X
Pis(X) = P, (x)Q(xYx): (2.21)

X

An invariant, or stationary, distribution, (x), is one that once reached, persists
forever. Such a distribution would remain invariant with respect to the transition prob-
ability:

X
(x) = ()Q(xTx): (2.22)

MCMC techniques sample from the de;ired distributionP (x), by constructing ergodic
Markov chains for which P(x) is its invariant distribution. An ergodic chain is one
for which none of the states are periodic and have a positivegbability of occurring.

Running the chain for a long time should hopefully result in ehieving the stationary
distribution, at which point the states of the chain may be kpt as samples from the
desired distribution.

The properties of Markov chains have been studied extensiyeas well as the various
requirements for achieving a desired invariant distribubn [36,109]. Given an ergodic
Markov chain, detailed balance is a su cient (though not neessary) condition for con-
structing a correct sampling chain. Detailed balance regus the probability of being in

any state and transitioning from it to a di erent state to be the same as the probability

being in the second state and transitioning from it to the oginal state:

0)Q(XGx) = (x)Q(xjx?: (2.23)
It is easy to show that a distribution (x) that satis es detailed balance is an invariant

distribution of the Markov chain:

X X X
P(x9) = ()Q(x4x) = )Qxix) = (x)  Qxix)= (x) (2.24)

X X

Detailed balance is a su cient condition for the proper consuction of a MCMC
method, though it is not a necessary condition. Nonetheless is widely used due to its

simplicity.
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to show that each such sampling step satis es detailed bale®. A complete iteration,
however, where each variable is sampled in turn does not sy detailed balance, but
does leave the desired distribution invariant. For the resbf this thesis, the sampling of
a single variable is referred to as a \Gibbs Step"”, and a fulteration of sampling each

variable exactly once is referred to as \Gibbs Sweep".

Metropolis-Hastings Algorithm Perhaps the most commonly used MCMC al-
gorithm, the Metropolis-Hastings algorithm, was proposeth 1970 by Hastings [46] as a
generalization of an earlier algorithm proposed by Metropis et. al. [74]. A new state,
X , is proposed based on the current states, by drawing a sample from some proposal
distribution, Q(x jx). The proposal is then accepted with probability

P(x)Q(xjx )
P(x)Q(x jx)

a(x;x )=min 1; (2.25)

If the proposal is rejected, the current state is repeated ithe sampler. Once again, it is
trivial to demonstrate that the Metropolis-Hastings algoithm satis es detailed balance.
Often, the proposal distribution involves making small chages to explore the space
around the current state. In these situations, successivamples are highly correlated,
as is often the case of Gibbs sampling. Such highly localizprbposal distributions may
be inappropriate for multi-modal distributions, where thesampling procedure would be
required to slowly traverse regions of low probability beteen modes. In cases where the
chain does not e ciently sample from the desired posteriorthe chain is said to have

\poor mixing" 2.

2A properly constructed chain is in theory guaranteed to, with in nite computation time, provide
samples from the desired distribution, even if the mixing ispoor. In practice, of course, good mixing is
desirable.
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2.3 Learning in Bayesian Networks

Several approaches for inference in a probability model reabeen presented in the pre-
ceding sections. It has been assumed that while carrying aaference, model parameters
are available. However, this is often not the case, and vaus techniques are available

for estimating these parameters.

2.3.1 Maximum likelihood and maximum a posteriori  estima-
tion

When a model does not include hidden variables, or the hiddeariables can be marginal-
ized out of the model, either analytically or through numegal methods, as discussed in
Section 2.2), maximum likelihood (ML) or maximuma posteriori (MAP) estimates can

be used for the parameters.

The model's likelihood function is given by
L()=P(xj): (2.26)

The ML estimate, as the name suggest, is the setting of the @aneters that maximize
the likelihood function. In contrast, the MAP estimate invdves introducing a prior for
the parameters' values, and maximizing the posterior dertigiover the parameters. This
prior may re ect the user's belief regarding the value of th@parameters, or it may simply
be chosen to provide better model predictions.

POPXI)

PUM= 50

I P()L(): (2.27)

Finding ML or MAP estimates usually involves a search of the grameter space. Algo-
rithms such as conjugate gradients, Newton's method, BFG&nd others are commonly

used for nding local optima [70, 80, 104].
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Maximum Likelihood Estimation in Factor Analysis

Recall that the factor analysis model is given by
z= y+ + [2.2]

In the discussion about inference (Section 2.2.1), it wassasned = 0. This can be
achieved by subtracting the maximum-likelihood estimatefo from z, which is simply

the sample mean ot.

2.3.2 The Expectation-Maximization Algorithm

In many Bayesian networks involving latent variables, diret ML estimation of the pa-
rameter is impractical if not impossible, since computinghe likelihood, , requires in-
tegration over the hidden variables, which is often intra@ble as discussed in Section
2.2. The expectation-maximization (EM) algorithm nds a local maximum for P (xV9j )
by iteratively inferring the posterior distribution over latent variables while keeping the
parameters xed, and maximizing the likelihood of the \comjeted data" obtained from
the inferred posterior [25, 78].

To use the EM algorithm, the parameters are initialized to sme initial guess, ©, at

time t = 0. The following two steps are iterated for timest = 1;2;::: until convergence:
E-Step: computeQ®(xf"9) = p(xfhojxive; t D)
M-Step: compute () =argmax Eq« »[logP (x™9; x 9 )]

The EM Algorithm for Factor Analysis

First presented by Rubin and Thayer [98], the exact EM algothhm can be derived for

the factor analysis model. As shown in Section 2.2.1, the etgosterior ofy (needed in
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the E-step) is given by a Gaussian distribution with mean andariance:

mean: m®D =(1+ ©> O ©O) 1 ©> ©F (2.28)

variance: SV =(1+ ©> © 1 )1 (2.29)

To derive the updates for the M-step, rst compute
X X X
L =Eql logP(x;"%x "% )] = QU0 log P (X% X" )
i i fhg
x Z )
= Qi) Ylog2) Zyryi Llog2j i) iz yi)> Uz yi)
i Yi

_(t)> >
i

.. t
= llogRj ) iz ‘z+im 'zi+1z; ' m®

%TI’( > 1 Si(t))+ rni(t)> > 1 m-(t) + constant:

|
(2.30)
wherei indexes the training examples, andh; and S; are the mean vector and covariance
matrix of y; as given in Equation (2.28) and (2.29). To nd the setting of he parameters

that maximize L, di erentiate and set to O:

X
-7 mm® (e mPm <o
‘ (2.31)
X X 1 :
) (t) = Zimi(t)> Si(t) + mi(t)mi(t)>
i i
@ _X 1 1 1 1> ( 1 He® @« 1 (1) () (D> (t
@ = 5 EZi>Zi+zimi (t)> 5 ()SI (t)> 5 ()ml mi (t)>
i 2.32
P 7> 7 zm (> (t)> ( )
) (O i 4i 4 it
N

Note that the update for ® in Equation (2.31) does not depend on , and it should

therefore be updated rst, and then used in Equation (2.32) hen updating ®.

2.3.3 \Variational Expectation Maximization

When the exact posterior is unavailable and variational irgrence is used (as discussed in

Section 2.2.2), a \variational EM" algorithm can be utilized. Here, the exact posterior,
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P (x""9jx"v9) is replaced with an approximateQ(x'"9) in the E-step. This Q distribution
is used to compute the updates for the model's parameters ihg M-step [63].

There is an alternate derivation of variational EM. Supposehat when maximizing
P(x™v9j ) = P (g P(X™V9;x™9j ) the summation is intractable. However, a lower bound
can be maximized due to Jensen's inequality (again the profe that argmax P =

argmax logP is used):

X
log(P(x"9 ) =log ~ P(x"9x"j )
xfhg
X QM)

=lo
g . Q(x™9)

P (x"9;x™"9} ) (2.33)

P(vag; thgj )

Q(x'"9)

which is the (negative) KL-divergence betwee® and P (Section 2.2.2). Several inter-

Q(x""%) log

xfhg

= F (P;Q);

esting properties based on the above derivation can be notedhe KL-divergence is
minimized when Q(x"9) = P (x'"%jx™v9; ), leading to the exact EM algorithm. This
in turn implies that the EM algorithm is maximizing a lower bound on the probability
of the data using coordinate decent (updating one coordinatat a time), and therefore
incomplete E- and M-steps are acceptable. For example, thégarithm may update the
posterior distribution for a subset of the training data in he E-step, or use a few itera-
tions of gradient decent in the M-step. It has been noted thathese type of updates can

lead to faster convergence [78].

2.3.4 Bayesian Learning

In previous sections, ML and MAP estimations of the model'sgrameters were explored.
By using these methods, it is assumed that enough example® available to accurately
estimate the single correct setting of the parameters. A derent approach employed in
Bayesian statistics is to treat the model's parameters in a amner akin to that of latent

variables. By placing a prior distribution on the parametes and marginalizing them



Chapter 2. Background 24

out, better predictions can be achieved [49]. Additionallysince the uncertainty in the
parameter estimation is properly accounted for, fewer traing examples are generally
needed, even when using complex models.

Unfortunately, most Bayesian models cannot be handled aryaically. With the excep-
tion of a few simple models, Bayesian models generally restar sampling or variational

methods to estimate the posterior distributions of the panmaeters and hidden variables.

2.4 Alternative Splicing

The following sections cover the biological background ressary for studying models
of alternative splicing. A brief overview of the relevant miecular biology is provided,

followed by a summary of wet-lab experiments, as well as contptional algorithms.

2.4.1 The Life Cycle of Biomolecules

Whether it is a single cell bacterium, or part of a complex mticellular organism, each
cell carries a complete copy of the genome of the organism tbieh it belongs. The ge-
nomic information is stored in the double stranded deoxyritnucleic acid (DNA) molecule
(Figure 2.5). DNA is a long sugar-phosphate polymer made ug tour basic monomers,
adenine (A), guanine (G), cytosine (C) and thymine (T), cakd nucleotides (nt). A
sequence of these four nucleotides encode biological fumts of an organism in much
the same way that a computer program may be encoded in a seqoerof 1's and O's.
The nucleotides are joined together through their sugar (deyribose) substrate to form
a single strand of DNA, and through complementary base pang to form the familiar
double helix. The nucleotides may only form specic base pai{ A bindsto T, and C
binds to G, an important feature that enables the cell to cret complementary copies of
existing DNA strands.

The biological processes within a cell are carried out usiegzymes, which are proteins
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Figure 2.5: DNA and RNA structure. DNA is comprised of two strands of long

sugar phosphate backbones wrapped in a double helix. The tvetrands are joined
through complementary base pair binding of Ato T and G to C. Tanscription to RNA
is performed on the \antisense" strand, where the RNA is elgated from its 5' to the 3'
direction, and the resulting RNA contains the same sequenes the \sense" strand (with

T replaced by U)

and other molecules that interact with one another to perfan essential cellular functions.
To convert the information on the DNA to proteins, an intermeliary molecule called
ribonucleic acid (RNA) is used. The RNA molecule corresposdo a segment of a single
strand of DNA, except that the substrate sugar is ribose, anthymine is replaced by uracil
(U), which similarly forms a base pair with adenine (A). RNA s&rands are transcribed
from DNA by unwinding the double helix of the DNA and creatinga complement copy
of RNA nucleotides (Figure 2.5. Transcription occurs on thantisensestrand, and the
RNA is elongated from 5' to 3'3, resulting in a sequence identical to that found on the

sensestrand, with thymine replaced by uracil. The descriptions bsense and antisense

3Ribose and deoxyribose, the sugar substrates of RNA and DNAe&spectively, contain ve carbon
molecules, numbered 1', 2', 3, 4, and 5. When forming a chimn, the 5' carbon is linked to the next 3'
carbon via a phospate group, while the terminal 3' and 5' are ot linked to a phosphate group. Directions
on DNA and RNA strands can therefore be unambiguously identied by specifying 3' or 5' ends. RNA is
always read 5'!  3', making the 3' untranslated region (UTR) downstream of the protein coding portion
of the gene.
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strands are only relevant in the context of a particular trascript, as the two DNA

strands serve one function or the other for di erent transapts. Under some situations,
RNA strands may be reversed-transcribed into complementaDNA (cDNA), either in

vivo (in life, in the cell), as in the case of retro-viruses (suchsaHIV), or in vitro (in

glass, experimentally), as in the case of reverse transdigm polymerase chain reaction
(RT-PCR).

One critical function of RNA is to bring protein coding infomation from the DNA
molecules in the nucleus to the protein synthesis mechanisthe ribosome, in the cyto-
plasm. This type of RNA is called messenger RNA (mMRNA). Othetypes of RNA, such
as small nuclear RNA (snRNA) and ribosomal RNA (rRNA), act aenzymes, usually in
conjunction with proteins and other molecules. Proteins artranslated from mRNA by
joining together amino acids through peptide bonds. Each geence of three nucleotides
in the mRNA, called a codon, codes for for one of twenty possbamino acids as shown
in Table 2.1.

Genes can be de ned as sections of the DNA that code for a paiar function,
much like a cohesive subroutine in a computer program. Moskges are protein-coding
genes, though there are many non-protein-coding genes, whaend product is an RNA

molecule [2, 68].

2.4.2 Gene Regulation

During transcription, the super-coiled double stranded DM is unwound and one of its
strands serves as a template for RNA synthesis. There are #& di erent types of RNA
synthesizing molecules, called RNA polymerase I, II, andllIAll protein coding genes
are synthesized by RNA polymerase II.

Upstream of the transcription start site in the DNA is the pramoter region, which
contains information necessary to regulate gene activatio The promoter region, typi-

cally a few thousands of nucleotides long, consists of a eglion of cis-acting sequences
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Table 2.1: Many-to-one mapping of codons to amino acids. The leftmost column
indicates the rst nucleotide in the codon, the header of a ¢domn indicates the middle
nucleotide, and the rightmost column indicates the third naleotide. For example, AUG

codes for Methionine.

U C A G
U
Phe Tyr Cys c
v Ser STOP A
Leu STOP Trp G
) U
His C
C Leu Pro Arg A
Gin G
U
. lle o Asn Ser C
A
Met Lys Arg G
U
Asp C
G Val Ala Gly A
Glu G

(can only a ect genes on the same chromosome or DNA molecules. nearby genes),
often referred to as motifs, that serve as binding sites. Theans-acting (can a ect genes
on other chromosomes or DNA molecules) transcription fag® bind to these motifs and
initiate transcription downstream of the cis-acting elements. Binding sites for transcrip-
tion factors tend to be of medium length, typically 10{40nt, with varying degrees of
speci city.

The transcription factors bind to the motifs in the promoterregion, either directly or
via a mediator, to guide and position the RNA polymerase Il tonitiate RNA synthesis.
This process is typically quite complex, involving activadrs and repressors binding the

DNA, as well as co-activators and co-repressors binding tbe transcription factors.
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There are two main classes of transcription factors for RNAglymerase Il. The rst
consists of general purpose factors that are used in most df taanscription activation.
These factors recognize specic sequences, usually at pautar positions upstream of
the transcription start site, and serve to guide the transgption. The second class of
factors consists of tissue-restricted transcription faots, which recognize speci ¢ binding
sequences, whose location typically vary widely, and serte regulate genes in tissue
speci ¢ manner.

A more recent discovery is a class of short RNA molecules, ctdd micro RNA
(miRNA) that contribute to gene regulation. These short (2925 nt) RNA sequences con-
tain complementary sequences and form hairpin loops. As ndranslated genes, miRNA
are typically found in intra-gene intronic elements and irgrgenic regions, usually quite
far from previously known protein coding genes [47].

While not all regulation mechanisms of miRNA are well undetsod, it has been
established that miRNA is often loaded into a RNA induced s#ncing complex (RISC)
and bind to the 3" untranslated region (UTR). There is evidece that miRNAs participate

in both translational interference and mRNA degradation mehanisms. [47, 50].

2.4.3 RNA Processing

In eukaryotic cells, which are cells containing nuclei andtleer components and of which
all multicellular and some single cell organisms are madetgbein-coding genes are not
typically found as contiguous segments in the DNA. Insteadnost genes contain both
exons, which contain the peptide-coding information, anchirons, which do not. Before
being sent to the ribosome, the transcribed RNA, at this poincalled precursor mRNA
(pre-mRNA), must be processed and the introns removed. Addinally, a multi pro-
tein complex performs polyadenylation on the pre-mRNA, whre adenine nucleotides are
added at the end of the mRNA strand, to produce the mature mRNA

Splicing of pre-mRNA is carried out through a complex known saathe spliceosome.
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Figure 2.6: Splicing of pre-mRNA . (a) The splicing signals are found at the splice
sites, branch point, and pyrimidine-rich region. (b) The sficeosome is assembled on the
pre-mRNA, forming base-pair bonding with the branch point ad 5" splice site. (c) The
intron is separated from the the 5° exon and forms the lariatid) The exons are joined,

the spliceosome disassociates, and the lariat is digested.

Five U-rich small nuclear ribonucleoprotein particles (SRNP), along with numerous
proteins, interact with each other and the pre-mRNA strandm an ordered sequence to
form the spliceosome. With the assistance of aiding proteirihat detect the 3' splice site
and the pyrimidine* rich region (Figure 2.6a), U2 forms a base pair bond with therbnch
point. Meanwhile, U1 binds to the 5' splice site, and U4 and UBase-pair to each other.
The ve snRNPs then join together to form the spliceosome (lgure 2.6b). Next, the
intron's 5' end is dissociated from the 5' exon and is joinedta conserved \A" nucleotide
in the branch point via a covalent bond to form the lariat (Figure 2.6c). Finally, the 3'
end of the intron is cut from the 3' exon and is replaced by the'®xon. The lariat and
spliced mRNA dissociate, followed by the dissociation of hsnRNPs, and the lariat is
broken down (Figure 2.6d) [43, 65].

Nonsense mediated mRNA decay (NMD) is an important post tragtriptional mecha-

4Pyrimidines are the C, T, and U nucleotides, which have a sintg carbon/nitrogen ring, while the
purines are the A and G nucleotides, with two such rings.
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nism that ensures that invalid mRNA transcripts are discaréd and do not get translated.
The NMD mechanism is activated when a premature terminatiortodon (PTC) is de-
tected in the mRNA transcript. A PTC triggers NMD when it is located more then
50-55nt upstream of the last exon-exon junction. NMD appearto be triggered by exon
junction complexes that are deposited 20-24nt upstream ofery exon-exon junction
during splicing. When a PTC is not present, the exon junctiorcomplexes are removed
during the pioneer round of translation, and NMD is not triggered. NMD appears to
serve mostly as a surveillance mechanism to remove errongdranscripts that can arise

from mutations or splicing errors [71, 83].

Alternative Splicing of RNA

Alternative splicing (AS) is the phenomena whereby the preaRNA may be spliced in
a variety of combinations to potentially produce many posble transcripts. While the
order or direction (sense) of the exons may not be changedig@e or multiple exons may
be dropped, an exon may contain more than one potential spdicsites, two exons may
be mutually exclusive, or an entire intron may be retained (l§ure 2.7). Of these, single
cassette exon skipping is the most frequent [13]. The vari®ypossible mature mRNA
forms for a common gene are calladoforms

It is currently estimated that as many as 85% of all human geseare alternatively
spliced, making AS a much more widespread phenomena thanyaoeisly suspected [84].
These ndings indicate that AS could account for much of thericreased complexity as-
sociated with higher eukaryotes, which cannot be accountddr by small di erences in
gene counts [13]. Other than contributing to the expansionfaan organism's genetic
repertoire, AS is known to play critical roles in the regulabn of development, cellular
di erentiation, maintenance of the di erentiated state, and apoptosis. In addition, dis-
ruption of splicing is frequently associated with human deases [14, 20]. The mechanisms

underlying AS and its regulation are relatively poorly undestood.
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Single cassete exon .
(a) —«:@:— <
| | |
Alternative 3" (donor) splice site | I |
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Alternative 5™ (acceptor) splice site
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Figure 2.7: Four types of AS. Boxes represent exons and lines represent introns, with
the possible splicing alternatives indicated by the conntwrs. (a) Single cassette exon
inclusion/exclusion. The anking exons are constitutive gons (exons that are included
in all isoforms) and the center exon may be skipped (b) Alteative 3' (or donor) splicing
sites. Both exons are constitutive, but may contain alterné@e donor splicing sites.
(c) Alternative 5' (or acceptor) splicing sites. Both exonsare constitutive, but may
contain alternative acceptor splicing sites. (d) Mutuallyexclusive exons. One of the two
alternative exons may be included, but not both. (e) Intron mclusion. An intron may

be included in the mature mRNA strand.
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2.5 Experimental Biology

There are a number of common methods for measuring gene exgsien. Of main interest
are those methods that measure protein and mRNA abundance3hese methods can
be categorized as either low- or high-throughput methods, it low-throughput methods
generally restricted to dozens of measurements, and highrdughput methods provid-
ing upwards of hundreds of thousands measurements in a smgxperiment. While
high-throughput methods have been utilized heavily in recg years with much success,
low-throughput methods are generally accepted to be more@gate because each mea-

surement is carefully acquired and validated by hand.

2.5.1 Low-throughput Methods

Traditionally, mRNA abundances have been studied using taoiques such as RT-PCR,
northern blotting, and RNAase protection assays. All the abve methods share the
common element of labelling RNA strands of interesti.e. corresponding to a particular
gene or isoform) with a radioactive tag to measure its abundae within the sample.
RT-PCR reverse transcribes (RT) the mRNA back to cDNA. The stands of interest
are ampli ed using polymerase chain reaction (PCR), in whit the DNA is iteratively
synthesized from available single strands, and separatedsulting in exponential growth
in the number of copies. The sample is then pulled through asgous gel by an external
electric eld (DNA is negatively charged), which separateshe DNA molecules in the
sample according to mass: lighter, shorter strands travehgter and therefore further
through the gel than heavier, longer strands. The gel is exped to photosensitive or
x-ray Im, and the labelled DNA can be seen as bands, with banthtensity dependent
on the amount of MRNA originally in the cell, and location depndent on strand length.
In Northern blotting, unampli ed RNA is passed through the gel and transferred to

a special blotting membrane such as nitrocellulose or nylo labelled probe targeting
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the sequence is hybridized to the blot revealing its locatio

The most sensitive of these methods, RNAase protection agsauses the labelled
probe to protect the targeted mRNA from a digesting enzyme (RAase) that breaks
down single stranded RNA. As in the previous methods, the saie is run on a gel and

exposed to x-ray Im to detect the presence of the protectedatget RNA.

2.5.2 High-throughput Methods
Microarrays

In the early 1990s, microarray technology emerged to simahieously measure expression
levels of thousands of DNA sequences. During the microarrégbrication phase, probes
are deposited onto a substrate, typically a glass microsoeslide. Each set of probes
typically contains thousands of short strands (25-60 mersrgeting speci ¢ genes, exons,
or even exon-exon junctions. As in RT-PCR, mRNA is extractedrom the cell, reverse
transcribed to cDNA, and labelled with red or green uoresad dye tags (cy3 and cy5
respectively). When the sample of labelled DNA is washed ouwhe slide, complementary
strands of DNA from the sample hybridize to the probes on thereay forming A-T and
C-G pairings. The slide is then scanned and the uorescenttensity is measured at each
probe. The intensity measurement is proportional to the ammt of uorescent cDNA
hybridized to the probe, and ultimately the amount of proten being produced in steady
state in the cell.

Microarrays have revolutionized the way biologists measaircell activity. Previously,
each gene participating in cell activity would be studied,ts regulation analyzed, and
its e ect revealed. This enabled understanding of specic ethanisms, but obscured
common trends and patterns. While that approach remains imluable and ongoing,
microarrays have enabled studies of thousands of genes atiméd, discovery of new

pathways and interactions, and analysis of genome-wide b@s, such as those revealed
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in whole genome studies [29, 53].

High Throughput Sequencing

Most recently, DNA and RNA sequencing technologies have erged as a viable approach
to measuring biomolecule contents of samples. New develagmin the elds now en-
able large-scale automatic sequencing of DNA and RNA conteof samples. These
approaches provide short read segments (32-500nt), whicancthen be mapped to the
relevant genome. The number of times a segment of RNA has bessquenced has been
shown to be highly correlated to the expression level of th@wresponding gene [44,72].
The resulting data is referred to as mRNA-Seq data.

High throughput sequencing has been recently applied for alysis of alternative splic-
ing complexity in human tissues. New splice junctions wereetected in approximately
20% of multiexon genes, many of which are tissue specic. Bymbining mRNA-Seq
and expressed sequence tags, it was estimated that tranptsi from approximately 95%
of multiexon genes undergo alternative splicing and that #re are approximately 100,000
intermediate- to high-abundance alternative splicing evis in major human tissues.
From a comparison with quantitative alternative splicing mcroarray pro ling data, it
was shown that mMRNA-Seq data provide reliable measuremerfts exon inclusion levels

[84].

2.6 Detection of Regulatory Factor Binding Sites

Finding binding sites of regulatory factors is one of the mosmportant tasks in decipher-
ing the genetic code. Most regulatory factors bind to spea target sequences, commonly
known as motifs. Motifs are typically short (6-50nt), and catain degeneracies in some
of the positions (.e. not all positions are completely conserved, and some may tain

any one of two, three, or all four nucleotides)
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A common representation for motifs is that of a consensus sempce, possibly with
the use of the IUB/IUPAC® standard alphabet to represent ambiguous positions in the
motif [81]. The consensus sequence representation workdl @ restriction enzymes,
which typically have (nearly) fully conserved binding site. Regulatory factors, however,
typically have motifs with high variability, where often only one or two positions in the
motif are conserved, while the other positions exhibit degeracy.

A position weight matrix (PWM), sometimes called position peci ¢ scoring matrix
(PSSM), represents a motif by providing a score for each lett at each position. This

AN

provides a 4 ~ matrix of scores, where is the length of the motif. To calculate the
score of a candidate sequence, the scores of the individétdrs are added. High scoring
sequences are then associated with the motif, while low sty sequences are rejected.
PWMs usually use either normalized frequency counts or logdds over a background
distribution for the scores. The simplifying assumption wen using PWMs is that each
position is independent of the others. Models with dependeies have been used, but can

lead to over tting of parameters due to the sparseness of thdata [11, 106]

2.6.1 Experimental Setup for Motif Finding

To apply the computational methods to be described in Sectio2.6.2, it is required to
de ne groups of sequences that are targeted by a common regfolry factor. Sequence
elements that are common to these sequences then serve aglickte motifs for the factor

in question. Several common techniques are described below

SELEX

SELEX (systematic evolution of ligands by exponential enchment) allows for the si-

multaneous screening of large pools of DNA for a particulaurictionality { in this case,

SIUPAC alphabet uses an extended symbol set beyond A, C, G, andr, to represent nucleotides
alternatives (e.g. Y represents the pyrimidines C or G) and triplets of nucleotides. The symbol N
represent \any" nucleotide, and is common even when using dg the four basic symbols.



Chapter 2. Background 36

a regulatory factor. With SELEX, a large pool of random DNA issynthesized, usually
containing 10° di erent DNA molecules. The binding agent is then used to exact the

DNA target molecules to which it binds. The targets are puried and ampli ed using

PCR. This process is repeated multiple times until a pool ctaning only a few unique
DNA sequences remains, which contains the binding target34], 64]. The nal sample is
sequenced, and since the sequences are usually short (a fesed nucleotides), the motif
can be usually found quite easily.

While simple, SELEX has several drawbacks. First, only onesgulatory factor can
be analyzed at a time, and that factor must be known (n@e novodetection of motifs).
Second, it has been shown that SELEX can both miss binding @ets and nd super uous
ones [64], since the experiment is conducté&d vitro and there are additional factors that

may act to suppress or enhance binding vivo.

Microarray Experiments

One of the most popular experiments for which microarrays €8tion 2.5.2) have been
used is to nd genes that are co-expressed under various cdiahs, such as di erent
tissues, di erent stress conditionsgetc. The common assumption and motivation is that
many of the genes that are co-expressed are expected to beegpilated (.e. regulated by
the same transcription factors). An examination the promagr region of these genes may
lead to discovery of common motifs that serve as the bindingies for common factors. Of
course, not all co-expressing genes are necessarily cadeggd. Some co-expressing genes
may regulate one another, participate in common pathways Wiout being co-regulated,
or simply to be co-regulated only under the subset of possgbtonditions that were tested.
As such, it is not usually expected that the common motifs apgar in every sequence,
but rather that it would appear in \unusually large” number of them. The de nition of
\unusually large" depends on the data quality, application and algorithm used to detect

the motifs.
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Immunoprecipitation Experiments

ChIP-chip experiments are another common technique for edtlishing a group of se-
guences with a common binding site. It combines Chromatin imunoprecipitation

(ChIP) with microarrays (chip) to extract sequences. ChIPShip experiments provide
clusters of DNA sequences, about 1,000nt long, that bind to @mmon proteinin vivo.

Full details on this technique can be found elsewhere [16].0k& recently, this technology
have been combined with high throughput sequencing (Seati®.5.2) to generate what
has been dubbed ChIPSeq data [12,59]. While these approaimave been highly suc-
cessful in detecting binding sites and generating accurateotif models, they have similar

drawbacks to SELEX in that the experiment requires known ragatory factors.

Cross-linking Immunoprecipitation (CLIP) performs a simiar function for RNA-
protein complexes. This enable the detection of binding si¢ of RNA binding proteins,
such as splicing factors. Once againle novodetection of motifs is not possible, as only

known binding proteins can be used [58].

Phylogenetic and Conservation Analysis

Some of the major successes in identifying transcriptiond@r binding sites have come
from comparative genomics, whereby the promoter regions oftholog® genes in two or
more genomes are aligned. Since the promoter is non-codifiggs commonly assumed
that any conservation observed in the region would indicatéunctionality (if a region

of DNA is non-functional, there is no evolutionary pressuréo conserve the sequence)
[17]. Phylogenetic footprinting, the task of identifying otholog genes across species is a

challenging topic of active research [37].

SHomolog: A gene related to a second gene by descent from a coramancestral DNA sequence.

Orthologs: genes in di erent species that evolved from a common ancestral gene by speciation.

Paralogs: genes related by duplication within a genome. Howlog genes may therefore be either
orthologs or paralogs.
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2.6.2 Computational Methods

As one of the oldest and most important problems in computatin biology, motif nding
has been tackled with a wide variety of algorithms. Most comanly, de novo motif
detection algorithms represent the motif as either a conssas sequence or a PWM to
detect over-represented motifs in a group of sequences. Timedel used for the motif
(PWM, consensus, etc.), the de nition of background distitution (hidden markov model,
training examples, etc.), the cost function, and the algatim used to optimize the cost
function are the de ning properties of the various motif nding algorithms.

Statistical approaches generally represent the motif uggna central consensus se-
guence, allowing mismatches or extended alphabet repretgion. Algorithms dier in
the choice of statistical test, data structure used to e ciatly compute signi cance levels,
and background model de nition. For example, Oligo/Dyad Aralysis [113,114] uses a
binomial distribution as the null hypothesis, where the prbability of a k-mer is com-
puted based on the entire genome; SeedSearcher [9] usesdfigxact test, based on
the hyper-geometric distribution, and allows for mismatchks; Yeast Motif Finder (YMF)
[101, 102] uses z-scores (number of standard deviation) e limited IUPAC alphabet
that allows single and double nucleotide information; Weent [86{89] and MITRA [31]
search the sequences for \words" (allowing mismatches) thappear more thann times,
wheren is a user de ned parameter.

Some of the algorithms are adapted to explicitly search dyauotifs, where the motifs
contains highly conserved edges, with a variable length géidI TRA, Oligo/Dyad Analy-
sis, YMF), while others emphasize highly conserved core segce with higher variability
near the edge of the motif (SeedSearcher). Additionally, &de nition of background
varies by either using base distribution using statisticsetived from the genome, or using
an explicit \negative" set (a set of sequences that should haver-represent the motif)
to de ne the null distribution.

Algorithms using PWM representation are varied in their appoaches. MEME [7, 8]
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models the data as \patches" drawn from a mixture of backgrawd distribution and a
single motif, taking care to not use overlapping patches s do avoid long sequences
of repeating elements. Upon convergence, MEME stochastliganasks the areas of the
sequence drawn from the motif, and repeats. MEME continuesntil no statistically
signi cant motif can be found. The themes and elements intduced by MEME were
utilized by many other algorithms since it was rst introduced in 1995. Most notably,
Improbizer [3] improves the background model to an HMM, and aks not break the
sequences into patches, and DEME [94] incorporates the framork into a discriminative

setting of positive and negative examples.

Another common approach is to use Gibbs sampling for motif tection. Originally
proposed in 1995 [79], an initial set of binding sites is read using Gibbs sampling steps
for the position of the motifs in the sequences. Here, too,garithms defer in the choice
of cost function, such as model probability [35,52,97, 108hformation content [41, 48],

or frequency thresholding [67].

Two probabilistic algorithms of note are LOGOS [119] and CModule [124]. LOGOS
uses a principled generative model that represents sequesi@s Hidden Markov Model
switching between background and motif states. E cient inerence is carried out using
the forward-backward algorithm, and model parameters aresrned using variational
Bayesian learning (also referred to as \Variational Expeettion-Expectation”). CisMod-
ule uses a sampling strategy akin to that used by the origindbibbs sampler [79], but

uses a hierarchical model of motifs to learn motifs \modulés

While the above probabilistic algorithms do not generally se a set of negative exam-
ples, electing instead to use model motifs that are over-rgsented given a background
distribution, others attempt to nd motifs that can be used to discriminate between a
positive and negative sets of sequences. Approaches heuitle neural networks [118],
discriminative scoring function that maximize the log-odd of the motif appearing in the

positive and negative samples [103] , and learning infornina¢ priors on motif position



Chapter 2. Background 40

based on nucleotide content [75, 76]

Various approaches have been suggested to deal with ndinget proper number and
width of motifs. Generally, some sort of sampling procedurer expert knowledge is ap-
plied so as to optimize the cost function with respect to mdtwidth, and heuristics, such
as thresholds, statistics, model selection approaches,tbe masking procedure introduced

by MEME, are used to determine the number of motifs.

2.6.3 Motif Detection in Alternative Splicing Data

Unfortunately, most motif detection algorithms are not diectly applicable for splicing
factors motif nding. First, some of the activation signal s found within the coding exon,
so evolutionary conservation of the genomic sequence canipe relied upon. Additionally,
introns tend to exhibit high conservation in the proximity of exons, quickly dropping
o as the distance from the nearest exon increases [120]. $htomplicates the use of
phylogenetic footprinting in intronic regions as well. Thause of microarray co-expression
has been impossible until recently, though there are now sal microarray splicing data
sets. [21, 60, 85, 107].

Splicing factors motifs have been extensively studied ugirtSELEX (Section 2.6.1).
While responsible for the characterization of many proteispeci c ESE sequences, many
of these sequences were found to be highly degenerate andnalaunt in intronic sequences
[122]. Additionally, SELEX is limited to detection of enharcers, without accounting for
silencers.

Computational approaches have been used to detect poteritiaxonic splicing en-
hancers (ESEs) by searching for short sequences that are roe@pressed in exons. All
possiblen-mers can be compared between alternative and constitutiexons, exons with
strong and weak splice sites, or exons and pseudoexons (nic regions anked by se-
guences matching the splice sites) [33,122]. These methdds/e led to hundreds of

predicted n-mers that function as splicing enhancers or silencers, manof which have
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been experimentally veri ed. Evolution conservation hased to limited success as well,
by con ning the analysis to exons found in the untranslated eégions (and hence non-
coding exons) of genes [55]. Statistical methods have alseebh successfully applied to

intronic sequences in alternative splicing data to revealdsue speci ¢ motifs [15, 32].
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Microarray Analysis and Inference

of Exon Inclusion Levels

This chapter presents approaches for inferring relative er inclusion levels based on
microarray data. First, preprocessing of microarray datad ensure high data quality is
discussed, including an algorithm for the removal of spati@ependent noise. The second
part of the chapter focuses on algorithms for the inferencd alternative splicing levels

from microarray measurements.

3.1 Spatial Trend Removal

Microarray measurements are subject to a number of experimtal artifacts. Global
normalization techniques [51, 96] have been used to make m@@ments from di erent
slides comparable. These methods ignore the position of aope on an array when
normalizing the signal. However, hybridization and scanng conditions can vary across a
single slide resulting in smoothly varying intensity trend. Often, background subtraction
is used to detect trends that result from non-speci ¢ bindig of transcripts to the array
substrate (the so-called \background intensity" around eeh probe). This is done based

on the assumption that the same factors a ecting the probesntensities and leading

42
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to the spatial trend are also a ecting the microarray substate. Since no signal should
be detected where no probes are to be found, some systematesa would be removed
by subtracting the background intensity from the probes' vales. However, on modern
substrates designed to avoid non specic binding, these trds do not appear in the

background, and therefore no trend is observed there.

Several methods have been introduced that estimate the trénacting on a single
probe using the \foreground" intensities of nearby probesThese methods are based on
the assumption that the spatial trend manifests as a local &6 in intensity measurements
that can be estimated from neighbouring (or nearby) probesWorkman et al. (2002)
estimate the spatial trend with a Gaussian kernel lter, whch uses the weighted mean of
nearby probes as the estimate of the local bias acting on a pe The estimated trends
are smooth, but are sensitive to high intensity measurementypical of microarray stud-
ies. Trends estimated using the median of neighbouring preb [117] are robust to high
intensity measurements but are discontinuous. Spatial L@gs combines the advantages
of both these approaches using robust local linear regressi23]. These method rely on
random placement of probes on the array, for which no corrélan between nearby probe

measurement should be observed.

All of these methods have \window-size" parameters that detmine how distance
a ects the in uence of a probe on the estimated trend. In gemeal, these window-size
parameters dictate how quickly the estimated spatial trendaries. Large windows lead to
slowly varying estimates that smooth over quick variationg the trend. Smaller windows
track these variations but are prone to sampling noise. Thedst choice of window-size

parameters balance errors due to quickly varying trends anghdersampling.

A spatial detrending method, called Spatial Trend Removal§TR), is presented here,
which combines the advantages of kernel ltering and mediattering and automatically

selects the optimal window-size parameters.
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3.1.1 Algorithm

STR was developed based on analysis of 110 two-color micragr experiments from
Zhanget al. (2004). These arrays are Agilent 22K custom arrays simildo those used
to generate data set MM22K (see Section 3.2). Consistent Witother studies [28], it
was observed that the log intensities had heavy-tailed disbution with a non-negligible
proportion of the spots having high intensity. These spotsdal variance to the estimate
of the spatial trend, and ignoring them improves the accurgcof the estimate. However,
selecting these spots by thresholding intensity may remowal spots in a given high-
intensity trend. Instead, these spots are selected based an initial trend estimate
derived from median Itering the image. Spots with high intesity compared to this

estimate are agged and not used in the second phase of STR.

The second phase of the algorithm uses a modi ed Gaussian kel Iter to estimate
a smooth function representing the trend in the data. The deénded dataset is set to be
equal to the element-wise di erence of the original datasetnd this estimate. Note that

the estimated trend acts on all spots, including those aggkin the rst stage.

The modi ed Gaussian kernel has a single parameter that is tmized to best repro-
duce the observed trend. This parameter is t using the assuption that nearby spots
should not have correlated expression. This assumption kis| for example, in microar-
ray formats where the spot location is randomized and thosehere replicate spots are
well-separated on the array. Under the above assumption, thhe absence of a spatial
trend, the best reconstruction of a spot's intensity is the werall mean of the data. In
the presence of a trend, this trend is a better estimate of a sps intensity. Therefore,
the kernel parameter is tted by minimizing the di erence bdween the estimate of the

trend produced by the kernel and the observed spot intensis.
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3.1.2 Optimizing the Gaussian Kernel Filter

Given the assumptions above, the error function is given byheé mean squared error

between the ltered dataset and the original dataset, as gen by

h

|
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whereN* is the number of non-outlier spots on th&™ array and X is the k™ array's

log-intensity value for the probe located at location i(j ). )@,“] ( ) is the estimated log

intensity value for location (j;j ), corresponding to the estimated trend, and is given by
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whereMi'ﬁ represents the result from the rst phase (median Iter phas) and assumes
the value O if the spot at location (;j ) is agged as an outlier, and 1 otherwise. The
ltering window, Wy, ( ) is indexed such that index (Q0) is at the center of the window.

In Equation (3.3), controls the e ective window size: a smaller results in a
smaller e ective window. EX( ) is continuously di erentiable as a function of , and can
be optimized using a line-search procedure. A two-dimens& Fast Fourier Transform
[22] is used to e ciently compute the numerator and the denommator in Equation (3.2)
as well as the derivative oEX( ).

STR can be used in online or global modes. In online mode, eastlde is optimized
individually to the optimum EX( ). In global mode, a single parameter is found that
optimizesE( ) = «EX( ). The online mode is typically faster and can be run in
parallel or added to a slide processing pipeline. The globadode provides more stable
estimates of , but can only be applied once all hybridizations and slide @unti cations
have been completed.

Typically, microarray slide quality can be evaluated by comparing dye-swaps. In this

setup, each sample is hybridized to two arrays, once in theegn channel, and once in
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the red channel. The two measurements can then be compareddstimate the signal
and noise properties of the experiment, where a high corrétan between the dye-swaps
indicates high signal delity. As seen in Figure 3.1, howeveusing dye-swap correlation
as the cost function may lead to disastrous results. Small mdow size parameters lead
to high correlation, but this improvement is due to introdu@d artifacts (\rings" around

high expressing probes) rather than improved signal debt

Median Iter parameters:

The output of the algorithm is less sensitive to the median tering parameters than to
the Gaussian lter parameters. A median Iter window size of7 7 works well in general.
STR ags the N % of spots that have the greatest di erence between the medialtered
estimated trend and the original data. By default,N is set by estimating the proportion
of spots with intensities signi cantly di erent from the median ltered trend using a
robust standard deviation estimate [45]. To do that, the medn Iter is applied to
the original microarray, X, data, and subtracting it from the median ltered data, X.
Probe measurements that are more than 3 away from 0 are marked as outliers, where

r = 1:483 median; jX;;  Xj;] is the adjusted median absolute error.

3.1.3 Experimental Results

Both the global and online versions of STR were applied to th&10 microarray exper-
iments in Zhanget al. (2004). Figure 3.2a-b show a sample array before and after
applying STR. STR removes the correlation between nearby @bes (Figure 3.2c) that
is characteristic of spatial trends [93]. To demonstrate #t removing the spatial trend
improves the quality of the signal, dye-swap replicates wercompared before and after
STR (Figure 3.2d) using the Pearson correlation coe cient ). STR improvesr in 97
out of 98 experiments with an initialr > 0:7. Twelve of the 110 experiments with < 0:7

were excluded from the analysis because one or both of thelregtes was primarily noise.
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Figure 3.1: E ect of varying window size parameter on correlation.

(@) The

same slide shown in Figure 3.2 is shown here after ltering thi a small window size

(

= 1) and no outlier removal. Each probe measuring high inteity (dark spots) is

surrounded by probes with low intensities (white spots) (b)The e ect of varying the

window size parameter, , on the intra-slide correlation {.e. between probes on the same

slide) of Gaussian kernel Itering (i.e. global STR with no atlier removal). Too small

a window creates ringing artifacts, resulting in negative arrelation between adjacent

probes, while too large a window does not remove the spatiaéhd su ciently, resulting

in positive correlation between adjacent probes. (c) The ect of varying the window size

parameter on cross-slide correlationi.e. correlation between dye-swaps). Interestingly,

smaller window sizes improve correlation between replied more than larger window

size parameters. This is most likely due to similar trends duced in the replicates, such

as rings, as seen from the induced negative intra-slide celation.
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Figure 3.2: Spatial trend removal analysis (a) A gray level image of a sample mi-
croarray data with a discernible spatial trend. The positio of each pixel in the image
represents the position of a probe on the array, and the grag\el intensity represents the
log-intensity measured at that probe. (b) The data from (a) &#er STR has been applied.
(c) The Pearson correlation coe cient (r) between probe intensities as a function of the
distance between probes on the array. (d) The improvement indue to STR. Ther be-

tween uor-reversals is computed before and after STR is ajppd to the slides, denoted
I'ore @nd rpos respectively. The dotted line marks the no improvement thighold, and the

dashed line marks maximum theoretical improvement. Twelvef the 110 experiments

with rye < 0:7 are not shown.
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Both global and online versions of STR were able to raiseon average 18% closer to the
theoretical maximum of one. However, STR did not improve coglations between slides
that are not replicates (data not shown), suggesting that tb correlation improvements
are not due to arbitrary transformations. The analysis demustrates that STR removes
spatial trends and simultaneously improves speci city andeproducibility of microarray

data.

STR was evaluated against median lItering and against Gauss1 kernel ltering.
Typically window size parameters are chosen by hand. Howey¢hese parameters were
t by optimization to ensure meaningful comparison. Due to he small number of possible
values, the window-size parameters for median lItering cabe easily set by discrete
search. On the other hand, choosing among the continuum ofrwiiow sizes for Gaussian
kernel Itering is more di cult. As such, the cost function i n Equation 3.1 was used to
set for the Gaussian kernel ltering. This is possible becausé&é¢ global version of STR
without outlier removal (i.e. M('};j) = 1;8i;j;k ) is identical to Gaussian kernel ltering.
The performance of the algorithm was evaluated using two m®ares: the correlation
between replicates (cross-slide correlation), and coraéion between adjacent spots on
the slide (intra-slide correlation). Increasing cross-sle correlation while decreasing intra-
slide correlation demonstrates that signal is recovered thout introducing new spatial

trends. The analysis was restricted to the 98 experiments thiinitial cross-slide r-value

of at least 0.7.

Figure 3.3 demonstrates that STR outperforms both median @ Gaussian kernel
detrending. For median ltering, it was found that increasng the window size beyond
3x3, consistently decreased the cross-slide correlatiseé also [117]). Compared to 3x3
median ltering, STR improves cross-slide correlation 83w of 98 times. Most of the
di erence in performance appears in experiments that haveigh initial cross-slide cor-
relations. In these cases, median ltering tends to reduceh¢ cross-slide correlations

whereas STR increases it. The performance gain over Gaussie@rnel Itering is more
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subtle. While the improvement in cross-slide correlationsicomparable, STR has a sig-
ni cantly larger reduction in intra-slide correlation. This di erence is likely due to the
fact that including outliers when estimating the spatial trend tends to correlate the de-
trended intensity of spots adjacent to the outliers due to th \ring" e ect (Figure 3.1).
Although online STR improves the cross-slide correlation ane than global STR, global
STR signi cantly reduces intra-slide correlation over onhe STR.

It should be noted that the Gaussian kernel parameter, could be expanded to a
full covariance matrix with three parameters (i, j, and correlation coe cient, rho).
However, no improvement was observed by using this approa@nd the learning times

increased by a large factor.

3.2 Alternative Splicing Microarray Platform

To survey AS levels on a large scale, a Qun Pan of the Blencovab lat University
of Toronto designed a custom DNA microarray [85]. The AS evenwere primarily se-
lected on the basis of having strong EST/cDNA-based suppdrfi.e. multiple independent
ESTs/cDNAs sequences revealed skipping or inclusion of kaadternative exon) [82, 85].

The microarray contained multiple probes for each AS evengllowing for redundancy
in the measurements and enabling quantitative analysis. Eh event is analyzed using six
probes, as shown in Figure 3.5. Three body probes are used tomtor each of the three
exons involved in the AS event - the constitutive (always ifaded) exons, G and GC,,
and the alternative exon, A. Two junction probes are used to omitor the two junctions
formed by the inclusion of the alternative exon and one jun@in probe monitors the
junction formed by the exclusion of the alternative exon angbining of the constitutive
exons.

As the technology of microarray developed and improved, andreasing number of

1EST data, or Expressed Sequence Tags are derived by sequamgireverse-transcribed mRNA and
give indication of the transcripts present in various tissues and cells
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Figure 3.3: Evaluation of performance of spatial detrending methods. Median

Itering is outperformed by Gaussian kernel based Iteringmethods, and in fact reduces
average cross-slide correlation and introduces negativetra-slide correlation. Online
STR increases average cross-slide correlation and reducdgsa-slide correlation when
compared to Gaussian kernel ltering (the improvement to itra-slide r-value is signi -

cant). Global STR does not improve cross-slide correlatioms much as online STR, but

has the best intra-slide correlation removal (nearly O infx-slide correlation.
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The three Gaussian kernel-based Itering methods performom-

parably and signi cantly better than 3x3 median. Global andonline STR have better

improvement in the bad slides (slides with lower cross-skdcorrelation between repli-

cates) compared to Gaussian Kernel Filtering, and performomparably on the good

slides.
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probes could be placed on the array. All the designs used Aggit custom array technology.

The available platforms and data sets are

MM22k - Mus musculus(house mouse) array with approximately 22,000 probes.
This is the original data set, and includes analysis of 10 mee tissues. This array

targets 3,126 events.

MM44k - Similar to the above, but contains approximately 4400 probes. This
array design was used to generate a data set of 27 mouse tissukhis array targets
3,707 exon skipping events (other probes are included on thgay, which account

for the low number)

HS244k - The most recent data set contains analysis of 5,78&,ts in 54 human

tissues.

3.3 GenASAP { a Generative Model for Alternative
Splicing Array Platform

The objective is to infer the relative levels of the two isofons contributing to the array
measurements. Two generative models that can be used to aogtish this are presented
here. The models are similar in structure, but use dierent aise models. The rst,
GenASAPV1, uses variational EM (Section 2.3.3) with analytal updates. It is relatively
fast, and as shown in Section 3.4.3, provides good predictsofor the original mouse
dataset. The second algorithm, GenASAPVv2, employs sampidnn its inference step,

and while slower, provides signi cantly better predictiors.

3.3.1 GenASAPv1 Model Description

It is assumed that there is a linear relationship between thetensity measured by the

probe and the abundance of target mRNA containing the probeifding sequences.
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{ c | 3 body probes

2 inclusion junction probes
1 exclusion junction probe
Figure 3.5: Alternative splicing array probe design. Each AS event on the array

is analyzed using six probes, as shown by the black lines. Eerbody probes monitor
the three exons involved in the event, two junction probes nmitor the inclusion isoform,

and one junction probe monitors the exclusion isoform.

Therefore, the intensity measured at each probe is modeled a linear combination
of the abundance of the inclusion and exclusion isoformsuglnoise. This can be written

as
Xi;k = k;incSi;inc + k;exsi;ex+ i;k; (3-4)

where X;i is the measured intensity at thek™ probe (one of six real-valued measure-
ments) for the i™ event from the microarray, Si.inc and S;.ex are the unknown real-value
abundances of the mRNA inclusion and exclusion isoforms pegtively, .inc and .ex
are the estimated a nity between the two mRNA isoforms and pobek, and ik is the

additive noise component for probd at event i.

To accurately infer the relative levels of the mRNA isoformst is crucial to have an ap-
propriate noise model. Microarray noise has been previoushown to be scale-dependent
[95]. Data preprocessing techniques, such as Variance Slialng Normalization [30, 51],
reduce this e ect by transforming the intensity data to a logor sinh * domair?. How-

ever, for the model's linear isoform combination assumptioto be valid, the microarray

2sinh ! is a log-like function that is de ned for negative values andis approximately linear near the
origin
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measurements must be maintained in the intensity domain. Atitionally, outlying mea-
surements resulting from faulty probes, aberrations on tharray surface, non-specic
binding, and other experimentally introduced errors are aounted for using an outlier

model. After incorporating scale-dependent noise and oyihg measurements, the model

becomes
8
~ 2 itk ok =0
Xl;k - 3 P
i kSt k) ok =1 (3.5)
X by Ok
= ri( ktSit ¥ k) ( i;k)oi;k ;

t

where the subscriptt indexes isoforms (inc and ex in Equation (3.4), the scale tac r;
is a real number accounting for noise levels at the measuredensity, ;x iS a pure noise
component representing an outlying measurement, and thenairy indicator, o« 2 f 0; 1g
identi es a probe measurement as being an outlieof = 1) or valid (o = 0).

Under the assumption of independent, zero-mean, normallyistkibuted noise, the
conditional probability of the data given the isoform leved, scale, and outlier indicators,

can be written as
Y Y X
P(xjs;r;0) = N (X ; Fi St e )b O N (X Ba V)% (3.6)
i k t
where the variance of the noise at probe typleis given by , and the mean and variance
of the outlier model are given byE and V; respectively.

Due to the biological interpretation of the variables and peameters in the model,
there are certain positivity constraints that must be met. Rrst, the isoform abundances,
S, may not take negative values. Also, the hybridization coecients, , may not assume
negative values, since the presence of an isoform should remtuce the measured intensity.

The constraint on the isoform abundances is enforced by setj its prior to a truncated

Gaussian distribution, as given by

P(sit) =2N(sit;0;1)[sic O], (3.7)
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Figure 3.6: Generative model of alternative splicing levels from the mi croarray
data. The six observed microarray intensities are modelled as adiar combination of
the two isoform levels,s; and s,, a ected by scale dependent noise,. The model allows

observations to be marked as outliers, as indicated by thenrary indicator variables

fOc1;0c2;0a;0c1:a; Oa:c2; Oc1:c20, and be associated with the outlier process.
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where [] is the indicator function such that[s 0] =1if sy O0,andfy; 0]=0
otherwise. The truncated Gaussian distribution enables noh of the analysis to be carried
out analytically, while satisfying the constraints. Othernon-negative prior distributions
may be used, however, such as the gamma distribution.

To completely specify the joint probability, priors over the remaining noise processes,
o and r need to be specied. The prior for the indicator variableo is parameterized
asP(ox = 1) = , where  is a learned parameter re ecting the probability of each

type of probe to be an outliera priori. For computational e ciency, r is selected from a

P(ri= Ry)=1=C.

3.3.2 Inferring Isoform Levels

This section presents a strategy for jointly learning the pameters of the model while
inferring the relative isoform levels. As previously dis@sed, the parameters of the model
are shared among all AS events on the arrays, and are compds# the noise variances,
, outlier probabilities, , the set of possible values for the scale factdiR1; Ry;:::; RcQ,
the outlier model's mean and variancely, and Vi, and the hybridization pro les, . Ad-
ditionally, the generative model contains observed and hign (latent) variables that are
unique for each AS event studied. The observed variables aree microarray measure-
ments, X, and the latent variables include the isoform levelss, outlier indicators, o, and

the scale factor,r.

Variational learning in GenASAPv1

To jointly estimate the isoforms levels and the model's paraeters, variational EM is
used. Under the mean eld approximation, the approximate ditribution is chosen such
that all variables are independent [78]. This type of disthution is often easily modelled

and computed but sacri ces knowledge of the structure inhent in the model. In GenAS-
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APv1, we make a partial mean eld approximation that retainsmuch of the structure of

the true posterior. The approximate posterior is given by

P(siiri;ajxi) = P(rijxi)P (ojxi; ri)P (sijxi; ri; &)

Y
Qri)Q(ajri)  Q(sieiri; @);

t

(3.8)

Note that the Q distribution depends on the observed datax, indirectly through the
variational parameters (see below).Q(ri = Rx) = ik and Q(o = Ojrij) = !0 are
discrete distributions, and together represent the respsibility of each of the mixture
components. Q(S;tjri; o) is parameterized asQ(Sitjri;0) / N (Sit; irot: irot )[Sit
0]. Thus, the a posteriori interdependence withins is disregarded, but the dependence
of sonr and ois retained in the approximation. Finally, Q(q;jri) is constrained to those
con gurations where at most two of the probes are marked as thers. This is done for
two reasons. First, it is possible to model two probes exagtlising two isoforms, and so
we would expect the quality of the predictions to drop as morprobes are allowed to be
marked as outliers. Second, the model is forced to assign @ la priori probability to
the outlier model (typical values are less than 5%). Thereffe, events where more than
two probes are outliers are expected to be extremely rare, cdiexploring those settings
would take a great deal of computational power that would beatgely unnecessary.
As discussed in Section 2.3.3, the free energy of the modegjigen by
ZX X
F(P;Q) = Q(s;0;1)log

S o r

P(s;0;r;x)

Qo0 .

and GenASAPV1 proceeds as shown in Box 3.1. The minimizat®m step 2 and 3 can
be carried out by setting partial derivatives of the free engy to zero, while enforcing the
constraint that the Q distribution must be positive and integrate to 1. The variatonal
updates for steps 2 and 3 are available in Appendix A. After coergence, an estimation of
the optimal parameters for the model and an approximation ahe posterior distribution

is available. The setting ofs;;r;, and o that maximizes Q(s;; r;i; 6) approximates the
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1. Initialize model parameters. The parameters may be indlized randomly
or to a prede ned value. While setting the parameters to meangful
values may speed up convergence, random initialization maelp if the
model contains multiple modes. For GenASAP, the initial vales of the

parameters were found to have little a ect on the results.

2. E-step. MinimizeF (P; Q) with respect to the variational parameters of the
Q distribution, , , Q(gjr), and Q(r), while keeping the model parameters

xed. Detailed update equations are available in Appendix A

3. M-step. Minimize F (P; Q) with respect to the model parameters, , ,

tailed update equations are available in Appendix A.

4. Repeat steps 2 and 3 until convergence.

Box 3.1: GenASAPv1 algorithm.
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maximum a posteriori (MAP) estimate of the outlier indicator, scaling factor, ard most

usefully, the isoform levels, which are used as estimatedioéd mMRNA isoform abundances.

3.3.3 GenASAPv2 Model Description

To carry out the variational EM algorithm analytically in GenASAPv1, the exponential
family distributions had to be used. Here it is shown how Gen®APv2 uses sampling to
perform inference in the model given a more accurate noise aebthat does not allow for
analytical analysis. Furthermore, the model's parameterare assigned prior distributions
and are included in the sampling phase as well.

Once again, the expression measured at a probe is assumed ¢oppboportional to a
linear combination of the abundances of the two isoforms, boow the noise is added after
a transformation to the sinh * domain. To simplify the notation, the sinh ! transformed
microarray data are assigned t& = sinh %(x). With the possible exception of the MM22k
data set, enough experimental conditions are available toadel the hybridization of each

probe individually:
— o 1 .
X’l;j;k = sinh i;k; incsi;j; inc T ibk; exsi;j; ex T K b T ik (3-10)

wherei indexes the event as before, the new subscriptindexes the experimental con-
dition, k once again indexes the probes (A, C etc), and K, is a global background
constant. An exponential prior is placed on the isoform abwtances,s, and a Gamma

prior on the hybridization pro les, , given by

P(Si;j;t ) = e Sit ; (311)
|Il<<tt le it = kit
P( )= — ‘ (3.12)
( k;t) k:t

wheret is the type of isoform (inclusion or exclusion). The globaldxkground constant,
Ky, and the noise variance, , are treated as two hyperparamets of the model, and

can be either learned or set by hand. Experiments show that hysing a more accurate
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noise model and event speci ¢ hybridization pro les, the otlier model is not necessary.
Given a white Gaussian noise model in the sinfh domain, the complete probability of

the model is given by

Y'Y Y Y |kktt 1e it = kit
P(xs; | Kp)= e - g
3.13
Y Y'Y Xijk  sinh l(Pt ikt Sijit +Kp) ’ ( )
p21=e 2

3.3.4 MCMC Sampling

Inference in GenASAPV2 is carried using Metropolis-Hastys sampling (Section 2.2.3)
for the latent variables. The prior on the hybridization proles re ects a belief about how
isoforms should bind to the probesi.e. the inclusion isoform hybridizes strongly td C;,
C,, A, C1:A, A:C,g, and weakly tof C;:C,g, while the exclusion isoform bind strongly
to fCq, C,, C1:Cog and weakly tof A, C1:A, A:C,0.

The sampling procedure exploits conditional independende the GenASAP model.
Given the hybridization pro les, f g, the isoform levels in each tissue are independent
of their levels in other tissues. The sampling was therefomeparated into two phases.
In the rst phase, the f g variables are kept constant and thd sg variables are sampled
by iterating over the subscriptsi;j (tissues and events) and jointly over the subscript
(isoforms). The proposed states are drawn from isometric @ssian distributions with
variance 2 = 0:1. In the second phase, the isoforms levels are kept constamtd the
hybridization pro les, f g, are sampled iteratively over subscripi (events) and jointly
over subscriptsk;t (probes and isoforms). Again, the proposed states are drainom an

isometric Gaussian distribution with variance 2 =1
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3.4 Experimental Results

The results presented for GenASAPv1 were obtained using tvetages of learning. In the
rst stage, the hybridization prole, , is learned on a subset of the data for which the
both constitutive exon body probes, € and C,, measured higher expression than the
90" percentile of a negative set of probes placed on the arraiye( probes that are not
targeting any known mRNA sequence). In the second step,is kept xed, an isotropic
noise constraint is introduced ( = | ), and the the entire data set is used during the
variational EM run. The constraint on the noise is introduce to prevent the model from
using only a subset of the six probes for making the nal set @iredictions. GenASAPv2
was run for 200,000 iterations during the burn-in phase, flolved by the collection of 200

samples every 200 iterations.

Since it is the relative amount of the isoforms that is of mosinterest, we use the
inferred distribution of the isoform abundances to obtain @& estimate for the relative
levels of AS isoforms. We refer to the isoforms that contaimd skip the alternative exon
as the inclusion and exclusion isoform respectively. For G&SAPvV1, the percent of the
included alternatively spliced isoform is given by %ASinc= Sffcﬁe where g, and 3.y

are the MAP estimation for the inclusion and exclusion isofm respectively, while for

GenASAPV2 the samples are used directly to estimate %ASine E[—Six—].

Sinc T Sex

3.4.1 Additional Approaches to Quantitative Estimation of AS

Levels

The results obtained by GenASAP shall be compared to predions made directly us-
ing the normalized probe values. These are common approashesed while analyzing

alternative splicing arrays, in particular, for analysis ® A metrix exon arrays [1].
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Body Probe Ratio (BPR)

PBR uses the measurements at the three body probes;,©,, and A:

XA

%ASINC = ———
0ASINC (Xcl n XCZ):Z

(3.14)

Junction Probe Ratio (JBR)

JPR uses the measurements at the three junction probes; @, A:C,, and C;:C;:

(Xcp:a + Xa:c,)=2

%ASInc = =
(Xcle + XA:Cz)_Z + Xclzcz

(3.15)

Junction and Body Probe Ratio (JBPR)

JBPR uses the measurements at the three junction probes;®, A:C,, and C;:C; in
combination with the inclusion body probe, A:

(Xc,a + Xa:c, + Xa)=3

%ASiInc =
(Xcya + Xa:c, T Xa)=3 + Xc;:c,

(3.16)

3.4.2 RT-PCR validation

The results are compared to RT-PCR assays covering a wide ganof percent exclusion
values and expression for the various datasets. RT-PCR agsaare often used as a semi-
guantitative method to validate microarray data. Figure 34.2 shows a sample RT-PCR
assay carried out for an AS event across ten mouse tissuesintar pairs were designed
to have matching Tm (59 C) and were targeted to constant exon sequences anking each
alternative exon. Gel images were recorded using a Syngers @gocumentation system
and quanti ed with Gene Snap software. Each column producetivo measurements
corresponding to the two isoforms, and the RT-PCR-measureAlS levels were calculated

as —=— wherel,, and |, are the measured intensity of the exclusion and inclusion

lex+ linc

isoform, respectively.
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AS event #2962
K Li | LuSaM SpH B T <— Tissuetype

S e e - e o e [N
o - . B —T1T 1]

28 21 30 33 29 34 41 32 60 33 <«— RT-PCR
24 21 26 24 30 26 32 15 59 21 <«— GenASAP

Figure 3.7: Sample RT-PCR gels for an AS event across the ten mouse tissue S.
Bands of sizes expected for the included and excluded mRNAfierms are indicated.
The labels above the gels indicate the tissue& idney, Liver, I ntestine, Lu ng, Salivary
gland, skeletalM uscle,Spleen, H eart, Brain, and T estis. Below the gel, measurements

for percent exclusion estimated from the RT-PCR and GenASARre shown.

It is important to note that while generally considered moreaccurate than microarray
analysis, PCR gels are nonetheless semi-quantitative. @thtechniques, such as quan-
titative PCR (gPCR), which use uorescent molecules instea of radioactive isotopes,
would be more useful for quantitative validation. Unforturately, these techniques are

also more expensive to carry out on a large scale, and are neaigable here.

3.4.3 Comparison of Algorithms

Figure 3.8 shows the correlation of all algorithms to RT-PCRneasurements as a function
of expression cuto . For each algorithm, the correlation wh RT-PCR measurements was
computed after removingP % of the lowest expressing events, where an event's expressi
was taken to be the mean of C1 and C2 probes (in the sinhdomain). To generate the
plot, P was varied from 0% to 99%, with all integer values considere@he three data sets

MM22k, MM44k, and HS244k have 280, 341, and 822 RT-PCR measments available
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for comparison respectively.

It is commonly accepted that microarray measurements havehagher signal to noise
ratio for higher measurements, and so it is reasonable to eeqi that as the mean of the
expression of the @and C, probes increases, the alternative splicing predictionstauracy
would increase as well, as seen in Figure 3.8. Perhaps notpsigingly, GenASAPv1l
outperforms all other algorithms, when compared to RT-PCRn data set MM22k, as it
was designed speci cally to handle this data set. GenASAP\Zerforms well on MM22k,
and is the top performer for MM44k and HS244k. In the later twalata sets, however,
GenASAPv1 performs considerably worse, exhibiting coregion with RT-PCR that is
lower than all algorithms but BPR, which consistently perfems poorly.

Several interesting observations emerge from Figure 3.8.

1. GenASAPV2 consistently performs better than the simpleduristics. This is pro-
nounced in the mouse data sets, and, while more subtle, catent across all ex-
pression cuto s in data set HS244k. In addition, GenASAPv2 movides a larger ad-
vantage when evaluating low expression probe sets in the nseudata sets, thereby
allowing the extraction of more information from each exp@&nent as compared to

the simple methods.

2. GenASAPv1 was developed in tandem with analysis of the MMR data set. An
iterative process of analysis, PCR validation, and model mement was in e ect.
As such, it is possible that the model is biased so as to proeidgood predictions

on that dataset, which may explain its lower performance ontber data sets.

3. In general, events were selected that were deemed \intstiag" (i.e. predicted to
exhibit di erential splicing between tissues), and as sughthe RT-PCR validations
is a biased measure of performance. Nonetheless, thesedadion are useful given

limited resources.

4. Microarray technology has improved in recent years. Bedt protocols, scanners,
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Figure 3.8: Alternative Splicing Measurements Comparison to RT-PCR. The

correlation of each of the algorithms to RT-PCR is shown as afiction of expression cut-
0. As expected, measurements' accuracy is improved with @rioarray probe intensity.
GenASAPvV1 outperforms the other algorithms in MM22k, with @nASAPv2 coming in
a close second. GenASAPv2 outperforms the other algorithnms MM44k and HS244Kk,
with GenASAPv1 performing poorly on those data sets. BPR isonsistently the lowest

performer.
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Table 3.1: Expression percentiles required to achieve high correlati on with RT-
PCR. For each of the three data sets, the expression percentilei@urequired to achieve
0.7, 0.8, and 0.9 Pearson correlation coe cient with RT-PCRis shown. Lower values
are better, and a dash indicates that that the algorithm is uable to achieve a particular

correlation. In each row, the lowest value is highlighted.

r - value | GenASAP | GenASAP BPR JPR JBPR
vl v2

MM22k
0.70 78 83 86 84 84
0.80 87 91 91 91 91
0.90 91 91 97 - 92

MM44k
0.70 59 41 90 47 47
0.80 76 51 - 59 65
0.90 92 80 - 80 90

HS244k
0.70 40 0 85 0 0
0.80 74 40 95 50 48
0.90 97 91 - 92 94
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and array fabrication techniques have led to more accuratergdictions across all
expression levels. As such, predictions obtained from sitapheuristics have im-
proved in accuracy as well, and the benet of using the sophisated GenASAP

algorithms has been reduced.

5. The popular a ymetrix exon arrays, often used to study akernative splicing pat-
terns, use body probes exclusively [1,92]. However, it isigent that predictions
based on body probes alone (BPR, yellow line) generally hapeor correlation with

RT-PCR.

The observation in point 1 above is further illustrated by Tdle 3.1. Acceptable level
of correlation with RT-PCR may range between 0.7 to 0.9, depéing on the experiment.
For each data set and algorithm, Table 3.1 shows the percent data that would have
to be discarded to achieve the desired correlation. It is @ent that if GenASAPv2
predictions are used, larger portions of the data may be reted for analysis compared

to the heuristics, with GenASAPv1 allowing even greater pdions in MM22k.

3.5 Summary

This chapter introduced the GenASAP algorithm for quantitdive prediction of alter-
native splicing levels from microarray data. While the avdable platform provides six
measurements for each event, targeting two isoforms, thegakithm is not inherently
limited to that framework. Should prior information indicate the presence of additional
isoforms, the array can be designed to include additional @oes and the algorithm can be
allowed to explore additional number of isoforms. GenASARY in particular is exible
enough to consider a di erent number of isoforms and probesrfeach event.

Biologists and engineers are constantly pushing high-thughput technology forward.
With each such step, new analysis techniques are often neg@d&enASAP is a product

of the early days of exon and junction arrays. As microarrayechnology progressed, and



Chapter 3. Microarray Analysis and Inference of Exon Inclusion Levels 69

microarray probe design and fabrication, experimental ptocols, and scanning technol-
ogy improved, simple heuristics, such as JPR, that assumamlistic noise models and
no cross hybridization improved in accuracy (Figure 3.8). &turally, GenASAP bene ts

from increased data delity, but where its superiority overJPR and JBPR superlative
when evaluated on the early arrays, its bene t is marginal omewer ones.

Microarrays, in general, may soon become obsolete in thetfgsowing eld of com-
putational analysis. Next generation sequencing (Sectidh5.2) is quickly becoming the
preferred method of high throughput analysis for gene exmsion and alternative splic-
ing measurement due to its improved accuracy. In addition,irece no probe design is
required, next generation sequencing facilitates extraog information about novel tran-
scripts, leading to a more complete picture of molecular Hagy.

From its conception in the early days of microarray exon angsis, GenASAP has
enabled critical analysis of global alternative splicing noperties in mammals. Its use
was prominent in studies revealing global trends of alterti@e splicing [85], nonsense-

mediated decay [83], global regulation of alternative sglig [32], and more [19, 54].



Chapter 4

Bayesian Motif Detection with

E cient MCMC Exploration

The microarray analysis techniques discussed in Chapter auseful for revealing genome-
wide patterns of alternative splicing. In this chapter, thepredicted alternative splicing
levels are used to study regulation of alternative splicinlgy nding sets of splicing events
that exhibit increased exon inclusion or skipping in similaconditions or tissues. Similar
to the concept of co-regulation of gene expression, whichfees to genes expressed in
similar conditions or tissues, these exons will be said to loe-spliced. A set of co-spliced
genes de ne ggroup, and given a large set of predicted inclusion levels, manyayps may
be de ned.

This chapter presents a novel motif detection algorithm thiauses e cient MCMC ex-
ploration to sample from the exact posterior in a Bayesian gerative model. The model,
dubbed GenBITES (Generative Model for Binding Sites) has lea further extended to
explicitly model positive and negative examples reminisge of discriminative analysis.
The model can, in fact, analyze multiple groups simultanealy to nd unique sets of

motifs that correlate with each of the groups.

Previous approaches to motif nding are covered in detail ilsection 2.6.2. In general,

70
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the task consists of detecting short sequence elements thgppear \unusually” often
within a group of (much) longer sequences. For example, givéhe promoter regions of
several genes that are believed to be coregulated, motif md) algorithms attempt to

nd similar sequence elements that appear in all (or most) ahe promoter regions.

4.1 GenBITES: A Generative model for Binding Sites

First, a description of the model and algorithm using only aisgle group de nition (i.e.
only positive examples) is provided. The model is extended tandle multiple groups in
Section 4.3.

LetfSig; i =1:::1 be a set of sequences in which a set of motifs are over-repinése
compared to their expected representation under the backauind distribution. Sequence
S, of length L, is comprised of zero or more non-overlapping motifs embesttiwithin the
background sequence. The background distribution shouldgture overall sequence prop-
erties such as the promoter region when searching for trangtion factors and codons
when searching for exonic splicing enhancers. The numberdidtinct motifs, M, may be
xed by the user or inferred from the data using a prior distrbution.

The motifs themselves are represented by position weight tnaes (PWMs). As
discussed in Section 2.6, a PWM is a matrix with four rows an@/,, columns, wheréW,,
is the width of motif m. The widths of the motifs searched for by the model is goverde
by a prior distribution over W. T, is the position of motif m in sequencea. The rst
nucleotide in the sequence has the index 1, and 3¢, = O is used to indicate that
motif m does not occur in sequence The probability of including a set ofM motifs in

sequenca at positionsT; = f Ty, g is

e [Tim >0] [Tim =0]
P(TjW) = DW:L, T)) s M (1 m) if no overlap (4.1)

0 otherwise

8
3 1 0
2
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where [] is the indicator function such that [T = 0] = 1 if T = 0, and O otherwise.

The function D computes the number of valid con gurations for a given set omotifs

(L; + M;)!
occurring in a sequence of length; and is given byD (W, L;; T;) = % where
P | i
L, = L; M 4im>% s the number of nucleotides not covered by motifs, and

P
M. =

m:1 [Tim > 0]. The motif placement probability assumes that the sequers are
long enough that the probability of placing more motifs thanthe sequence can hold is
zero or negligible.

In this Bayesian method, the values of the PWM parameters or atif occurrence
probabilities are not estimated by a single value. Insteadheir posterior distribution are
found, which helps avoid over tting. This requires de ning prior distributions for these
parameters. The prior for the probability that motif m occurs in a sequence,y,, is the

conjugate Beta prior:

(atb ., b 1
O= oy - ¢ ) (4.2)
Similarly, the conjugate Dirichlet prior is placed over edt column of the PWM:
W¥m 4 V¥
P( = &) ! (4.3)

wer ()0
where ...n IS the probability of observing nucleotiden at position w in motif m, and is
the Dirichlet prior parameter. Since there is no reason to agme that motifs will exhibit
a preference for one nucleotide over the others, only one pareter is used to describe
the Dirichlet prior. Furthermore, we are usually interestd in well-de ned motifs, where
most of the probability mass is placed on one or two nucleo&d at each position, so
is generally set to a value much less than 1.

The sequences are assumed to be generated from the motifs &mel background
model. Any background model can be used, as long as it provedehe position-speci ¢
probabilities needed here. A '8 order Markov chain trained by maximum likelihood

was found to be generally appropriafe The probability of sequence given the other

Lldeally, the Markov chain transition probabilities should be learned from sequences that share the
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variables is

. W W

P(Sij;T; B)= B(S;T) MW (Si . vw 1) (4.4)
m=1  w=1 '
s.t. Tim >0
8
2 . _
1 if9T.,, > OT.: [<Tiv + W

WherEB(Sl ; TI) = Q |L:Il S I;m J i‘m i'm m

P(Sijm 1, Si;| 2, Si;| 3) otherwise
When S;,; ; is unde ned, (i.e. the rst, second, or third positions in the sequence), that

value is summed over with a uniform prior.

4.2 MCMC Sampling

There are three classes of variables to sample: the numbernodtifs, M, the widths of
the motifs, W, and the positions of the motifs in the sequence$,. Each variable class is
sampled separately. An outer loop chooses at each iteratiaich variable classes should
be sampled with user-de ned probabilities. To improve the eiency of the sampling,
the PWM () and the motif occurrence probabilities () are marginalized. The joint

probability of the remaining variables is

(a+b (P | [Tim > 0]+ @) ( i | [Tim =0]+ b)
(a)(b (I+a+b

Y
P(M;W,T;S)= P(M) P(Wp)
m=1
Y 1

YW 4 )% (N + )
( *( 2, Npwn+ ) ., DIWL;T)

B(Si;Th);

m=1 w=1

(4.5)

whereN .w.n IS the number of times nucleotiden appears in positionw for motif m.

same background properties as the sequences of interest, thadp not contain the motifs. In practice, the
background probabilities can usually be learned directly fom the sequences of interest, as the motifs
comprise a negligible fraction of the data.
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4.2.1 Motif Position, T

Motif positions in the sequences are sampled using Gibbs ga@img. The conditional

distribution of T;., given all other variables is

P(Ti;ij;W;Ti;nm; Si) /
8

P Bs:T) Q N iw: (ST +
(Si;Ti) Wm mws (SiTim +w 1) :
% 1[Tj,m > O]+ a D(W,L|,T|) w=1 r nNm;w;n +4 T|-m > O
i

where T;. .,y indicates the positions of all the motifs in sequence except motif m and

o Il

°

— B(Si;Ti —
1:1[Tj;m =0]+ b D(\EV?Liﬂzi) Tim =0

i6i

N indicates that the counting variable N does not account forT;, . Since there are
at mostL; W, +2 possible values forT;.,, (less if other motifs are already present in
the sequence), exact enumeration of positions is tractabéend exact Gibbs sampling is
possible. Using simple transformations and reductions, ¢hentire Gibbs sampling step
can be performed inO(jS;ij). An illustrative example of the Gibbs sampling is shown in

Figure 5.1.

4.2.2 Motif Width, W

A common di culty that generative models face is nding a local optimum where the
motif model is not aligned to the conserved regions, therelsither missing a portion
of the conserved binding sites at the beginning of the modedy including super uous
elements. Escaping these local optima requires that all PWNkblumns be shifted left or
right to make room for additional columns. This can be achi@d by including MCMC
moves that can change a motif's width by adding or removing aeotumn at the beginning

or end. The following algorithm samples the motif's width:

1. Choose a motifm randomly and uniformly out of the M motifs in the model.

2. There are four possible moves: add/remove a column at thedinning of the motif,
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1 2 3
4 5 6
7 8 9
10 11 12
Figure 4.1: An illustrative example of Gibbs sampling for motif positio n, T.

1) An empty motif (i.e. one for which T, = 0 8i) is initialized with length 6. 2) The
rst sequence is evaluated, and a position is sampled. The FWis marginalized, and its
mode is shown below the sequences, where the height of théeletndicates the relative
weight at that position. 3) the second sequence is evaluategxt, but no motif is iden-
tied. 4) The third sequence is evaluated, 5) and so on. 6) Ashe Gibbs sweep reaches
the nal sequences, 7) several binding sites have been idesl. 8) The rst iteration
concludes, and 9) the following Gibbs sweep begins. 10), TThe second iteration eval-
uates the sequences in order, until 12) all sequences ardgtets The algorithm repeats

this procedure, extracting samples until enough have beenllected.
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or add/remove a column at the end of the motif. Choose amongéhpossible moves

randomly and uniformly.

3. If the action is to add a column, remove all invalid occurmgces of the motif (a motif
cannot overlap another motif or cover a non-existent segmtenf the sequence). This
is a deterministic step that generates an alternate state ffadhe position variables,
T2 in a many-to-one mapping. In addition, if the action is to addor remove a
column at the beginning of the motif, the position variablesT2", must be adjusted
appropriately to point to the rst nucleotide in the motif. W hen removing a column

at the end of the motif, T3" = T,, as no adjustments are necessary.

4. Perform a Gibbs sweep over the sequences by performing a single Gibbs sampling
step for each of the position variables corresponding to mbtn. This provides the
proposed state of motif width and positionsfW,,; T,,g. Compute the transition
probability

Y
QWi TnjWi; Tm) = QWi TnjWin; TR = P Ty Wiy T+ Ticim 3 S)
that corresponds to the probability that the Gibbs sweep frm the alternate state

will produce the proposed state.

5. To compute the backward transition probability, Q(Wn; TmjW,,; T,,), repeat step
3to nd state T2" . This time, start with the proposed state,T,,, and perform the
opposite action {.e. if the action was to add a column at the end of the motif, the

opposite action is to remove that column).

6. Compute the backwards transition probability

Y
Q(Wm ; ijWm ; Tm) = P (Ti;m jTjiIit;m ; Tj<i;m ; Si)

i
as it would be computed in step 4 by performing a Gibbs sweeprfall | sequences.

Note that this time no actual sampling is taking place. Instad, for each sequence,
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the probability of setting the position variable, T;., , to its original value from step
1 is computed. The variable must be updated before evaluagnthe subsequent

sequences to ensure the conditional probabilities are coanted correctly.

7. The proposed statefW,,; T, g, is accepted using the Metropolis-Hastings accep-
tance probability:

QWi TnjWis T )P (W T S)

AW T Weni Tmn) =N L Sy T Wi T )P (Won: Trn: S)

4.7)

4.2.3 Motif Count, M

Just at the motif width is not sampled directly, instead propsing small transitions
whereby a single column is added to or removed from the PWM, ¢hnumber of mo-
tifs in the model is not sampled directly. Instead, small trasitions whereby a single
motif is either added to or removed from the model are propodeWhen adding a motif,
a width variable, Wy,, and | occurrences of positionsT,,, must be generated for the
new motif. It is possible to naively sample these variablesoim the prior, or some other
distribution. However, this approach is unlikely to nd meaningful new motifs and would
result in poor mixing. Using a single Gibbs sweep from a detamistic starting point, as
is done when sampling the motif width, is also possible. Hower a single Gibbs sweep is
also unlikely to settle towards a meaningful motif. Better esults can be obtained with

an adaptation of Jain and Neal's split-and-merge MCMC algathm [56].

1. Choose to add or remove a motif with probability ,(M) and (M) =1 a(M)
respectively. The probability of adding a motif is kept at 05, except whenM =0,

in which case ,(0) = 1.

2. (a) To propose adding a motif,

i. Create a motif. Sample its width, W32, from the prior, and initialize the

positions, T,,. Generally, it was found that initializing the motif to be
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\empty" works well (i.e. the motif does not appear in any sequence). It

is also valid to randomly assign it in some sequences.

. Run K iterations of Gibbs sweeps only for the position3,, of the new

motif, with all other variables in the model kept constant. Each iteration
requires updatingT;, for all | sequences. The nal state afteK itera-
tions is the launch state, containing the new motif width andpositions,

fwa;Tka.

iii. Perform one more Gibbs sweep for the new motif over dll sequences to

generate the proposed state[2. Note that the width variable, W2 does

not change. Compute the forward transition probability

Y
QTaiTw) = P(TmiTsim i Tdim 55 (4.8)

as you perform the sampling.

iv. The backwards transition probability is given byQ,(T,,) / L

—p L 00
1+ i|:1 [Tim >0]’

where m is the index of the newly added motif. This probability is a

direct result of the motif removal procedure of step 2(b).

(b) To propose removing a motif,

Choose one of the motifs in the model with probabilityQ,(T.,), given
above, so that the less frequently a motif appears, the morigély it is to
be chosen for removal. Removing a motif simply involves rewing the
variables associated with the motif. There is only one way tdo this, and

so the forward transition probability Q(TLjTm) = Qr(Tm).

ii. To compute the backward transition probability, the procedure in step

2(a) must be performed. Begin with the proposed state and @t a new

motif, setting its width to the width of the removed motif, W,,. Initialize

the position variables, T, in the same way done in step 2(a)i.
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iii. Run K iterations of Gibbs sweeps only for the motif positions,,,, of motif
m. The nal state after K iterations is the backward launch state, contain-

ing the original motif width and backwards launch positionstm;TrEL g.

iv. Compute the backwards transition probability
Y
QTwiTo) = P(TimiTZm i Tiim ;S) (4.9)
i
as it would be computed in step 2(a)iii by performing a Gibbsvegeep
for all I sequences. Note that this time no actual sampling is taking
place. Instead, for each sequence, the probability of settj the position
variable, T;.n, , to its original value from step 1 is computed. The variable
must be updated before evaluating the subsequent sequentesensure

the conditional probabilities are computed correctly.

3. Accept the proposed transition using the Metropolis-Haisigs probability

(M +1)Q;(Tn)P(M +1;,W? T#S)
a(M)Q(T3TH)P(W2)P(M;W;T; S)

aM +1;W2;T3jM)=min 1 (4.10)

for adding a motif, and
!
A(M DQTITT)P(W,)P(M  LW";T;S)

aM  YM; Wi Tm) = min - 1, (M)Q (Tn)P(M: W T;S)

(4.11)

for removing a motif.

The sampling procedure of both motif width,W, and motif count, N, is illustrated

in Figure 4.2

Validity of Algorithm

The validity of the algorithm can be shown by a similar argumet to that used by Jain
and Neal [57]. Since the launch state de nes the transitionrpbability, selecting the

launch state is equivalent to selecting a di erent Metropas-Hastings algorithm. So
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Iteration:25 Iteration:50 Iteration:125 Iteration:275
Iteration:500 Iteration:1300 Iteration:1750 Iteration:2225
Iteration:2350 Iteration:3575 Iteration:4100 Iteration:10000
1 2 3
Figure 4.2: An illustrative example of motif count and width sampling. Samples

are retained once every 25 iterations. The model is initizled with a single empty motif
and having not succeeded in locking onto a motif, removes iy bteration 125. A motif
is added back into the model by iteration 275, though a supenous column has been
added to the beginning of the matrix. That column is removed Y iteration 500, and
another column is added by iteration 1300. A second motif isdded by iteration 2225,
and after some exploration, locks onto a motif by iteration 875, after which the two
motifs stay. The PWM used to embed the motifs in the generatedynthetic sequences
are shown in boxes 1-3. GenBITES considers motifs 1 and 2 to the same motif due

to their similarities.
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long as all possible launch states produce valid transitisnand are initialized without
reference to the part of the state that is changed, the resuty Metropolis-Hastings
algorithms are valid. It is straightforward to show that given the launch state, the
transition probabilities satisfy detailed balance and argalid MCMC algorithms. Finally,

it is noted that stochastically selecting among valid MCMC gorithms is a valid way of

constructing a Markov Chain Monte Carlo algorithm [110].

4.3 Incorporating Multiple Group De nitions

The algorithm presented in Section 4 infers positions in theequences that re ect re-
curring motifs that are \surprising”" based on the given bacground model. In certain
situations, a set of examples that are expected to not contathe motifs may be available
that may be used to direct the search. For example, based ongroarray experiments, a
set of co-spliced exons would de ne group. It is therefore believed that these exons may
contain binding sites for common splicing factors. By examing the genomic sequences
of the exons and surrounding regions, common motifs could baund that would corre-
spond to these binding sites. If only the co-spliced group éxamined, some, or even all,
of the motifs detected may correspond to motifs that are glaly common to all exons in
the organism (possibly contributing to exon de nition or smply an extension of the back-
ground model) and are not uniquely over-represented in theedched group. Statistical
methods address this by comparing the de ned group (positvexamples) to sequences
belonging to exons outside the de ned group (negative exangs). In the above example,
the negative group would be a representative sample of exdahat are not co-spliced with
the positive group. In this section it is shown how to extend énBITES to nd motifs
that are over-represented only in the positive group.

Detecting motifs that appear more commonly in a positive gugp compared to a

negative group can be achieved by controlling the prior of ghmotif occurrence parameter,
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. Instead of a motif having only a single parameter, it is allowed to have multiple
parameters, where the group to which the sequence belongdiotates which value of
to use. Speci cally,

Plime) = % 7y (1 mg)® (4.12)

where the subscriptm indicates the motif, and the subscriptg indicates the group. Each
sequence is associated with a speci ¢ group (based on miarag analysis, for example),
and the probability of seeing a motif occurrence in a given geence is given by
1 o
[Tim >0] im =0
im >0l 9 . )Tim =0 if no overla
D(W;Li;T) ey 0 ( mg:) ! verap

0 otherwise

P(TijW;Li;g) = (4.13)

W AW 00

whereg; is an observed variable.

In the example given at the beginning of the section, two grgude nitions are required
for the positive and negative samples. Setting, = 5, by = 95 for the negative group
(g =0), and a; = 75, by = 25 for the positive groups @ = 1) can achieve the desired
e ect. These priors would direct the inference to nd motifsthat are common in the
positive groups (appearing in  75% of the sequences), and rare in the negative group
(appearing in 5% of the sequences). Figure 4.3b demonstrates the e ect bktpriors.

However, it is likely that the sequences contain motifs thalre common to both
groups. Detecting these motifs as common to both groups maglp direct the search
for over-represented motifs by re ning the background modelIn some situations, these
motifs may even hold interest in and of themselves. Therefareach motif is associated
with a category Each category de nes a separation of the input sequencegargroups.
In the above example, two categories would su ce. Under cag@ry A, all sequences are
placed in a single group with a single motif occurrence prior, whose Beta parameters
are set toa) = 3, kff =5. A motif associated with categoryA is therefore equally likely

to appear in all sequences at a \medium" frequency. Under aagory B, the sequences
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are place into two groups, based on the microarray analysend the Beta parameters are
set the values speci ed above. A motif associated with catery B would be more likely
to appear in sequences belonging to grougp = 1 that in sequences belonging to group
g = 0. The category associated with the motif determines if its a common motif, or

one that is over-represented in the positive group (Figure.3a-b).

sequences intds, groups. Note thatG, de nes a category as described above. Let
be a vector ofG, values with a prior probability given by

A\ G L&
et ey ey (4.14)
=1 (a”)(bY)
The full joint probability for this extended model is

P( Gy):

P(M;W;T;S;y) =
¥ ¥ (4 )Q4_ (Nmwn + ) Y B(S:TH)
P(M P (WP (Vi P51 win
( )m=1 (mP )wzl( * (" paaNmen+ ) o DIWILET)
(4.15)
(7 Mm>0+a®)( | [T = 0]+ )
§m (arGym + b_Gym) gi;ylzml=r gi;;:ml=l'

e (BT P e a®n s T T = 0)+ )
Oy m=1 O m=1
where y,, indicates the category associated with motim and is sampled using Gibbs
sampling. Note that the model is not limited simply to positve and negative groups, nor
is it limited to two categories. As shown in Figure 4.3c, an gpication can arise where

the data may be divided into many groups and categories.

4.3.1 Interpreting GenBITES Results

Most, if not all, motif detection algorithms aim to provide the user with a concise list of

detected motifs. Depending on the model used, these may betive form of consensus
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Beta priors
25 : , T
----- a =5, b =95 (negative group)
20!t a =75, b =25 (positive group)|l
===3=3b=5
15r:
c
a -
10¢:= 1
0 - " TR E~a
0 0.2 0.4 0.6 0.8 1
g
(a) (b)
0
1
(€)
Figure 4.3: The use of categories for nding over-represented motifs . (a) Sep-

aration of the data into categories and groups. Each point peesents an abstraction of
a single sequence, where grouped sequences represent aedegroup. Each sequence
has two group associations, depending on the category. Unamategory A all sequences
belong to the same group, and under categorg, the sequences are divided into two
mutually exclusive groups. (b) The motif occurrences prigron the variables used in
the example. The dotted line shows the prior on the negativeragups (Bo), where few
motifs are expected to be found. The solid line shows the prion the positive groups
(B1), where the motif is expected to be over-represented. Thesteed line shows the prior
for motifs that are common to both groups A). (c) The model is not limited to positive
and negative groups. Depending on the application and datdhere may be multiple

category de nitions, each with multiple mutually exclusive groups.
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Figure 4.4: Bayesian Network for GenBITES. The solid nodes and vertices represent
the relationship of the variables in the exploratory versio of GenBITES. The dashed
node and vertex,y, is the category indicator added to enable discriminatory etection of
motifs. The choice of categoryy,,, for motif m selects among a set of prior distributions

that di erentiate the motif inclusion prior |, between groups.
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sequences or PWMs, and the inherent assumption is that one imiore regulatory factors
bind to each of the detected motifs. The motifs can then be udevhen scanning new
sequences to nd potential binding sites. However, when da so, the user is limited by

the de nition of the consensus sequences, or a hard thresth@pplied to a PWM.

It is possible to process the posterior returned by GenBITE® produce a set of
de nitive PWMs, capturing modes of the posterior, and prowviling results similar to
those of other algorithms. However, this approach loses niumformation contained in
the posterior distribution. Naturally, the uncertainty about the motifs and their sequence
positions is not captured by one or a small number of distriiiton modes. Additionally,
positional dependencies can arise from information contead in the sequences despite
the use of the PWM model. For example, A PWM may show that A and Gppear with
equal probability in position 3 and C and T appear with equal pobability in position
5. An examination of the data may reveal that A always appearwith T and G always
appears with C, making those positions dependent. Howevdy reverting to a PWM

format for the output, these positional dependencies woulde lost.

In addition to the analytical challenges of obtaining the dstribution modes, and the
inherent loss of information, the ultimate goal of most mofi nding analyses is to identify
potential binding sites of regulatory factors. Typically,the detected PWMs would be used

to analyze sequences for binding sites.

A more elegant solution arises when considering that GenBES provides the poste-
rior distribution over all variables in the model, not just the motif's PWM. Signi cantly,
GenBITES outputs the posterior over the choice for each nuwebtide in the sequence of
whether it originated from the background model or the motiimodel. As shown in Fig-
ure 4.5a, this can be used to identify potential binding sitein the provided sequences

irrespective of what motifs exist, their lengths, or even M@ many there are.

Another useful piece of information that can be easily extced from GenBITES'

output is the strength of N-mers as potential binding sitesGiven the MCMC samples,
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N-mer Count

09 CCTCAGCCTC 5285
0.8 T
o GCAGTGAGC 3637
0.6

CCTCAGCCT 2447
0.5
047 GGTGGCTC 2082
0.3+
02 AGGCTGAGGT 502
0.1+
0 CATTTAAGICT TCAACCCAT TGTGAGT TGAT 11T TACAGAT GG GI AAGGAAGCEGGT OCAGT T TCAATCT 1T TGCATACAGCTAGCCAGT TATCOCAGTA CCTCAGCCTA 423

(@) (b)

Figure 4.5: Sample GenBITES output. (a) The samples collected by MCMC sam-
pling are processed to compute the probability of each posih in the sequence belonging
to a binding site. (b) The samples can additionally be used tocount the number of times
each unique N-mer appeared as part of a binding site. The N-rseare then sorted by the

number of times they appeared, indicating the strength of & potential binding sites.
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one can count how many times each unique N-mer appeared aswvdnafrom a motif
PWM. The number of times each N-mer appeared then providessitrelative strength
(Figure 4.5b). While useful, this view of the motifs should & analyzed carefully. For
example, a vague motif (one whose PWM contains several pasits in which a single
nucleotide represents most of the probability mass and/or hose length may vary) may
be more abundant, and just as strong a binding site, as anothenore deterministic motif
(one whose PWM contains many positions in which a single nedtide represents most
of the probability mass and whose length is xed). However,irsce the deterministic
motif captures only a few uniqgue N-mers, while the vague métis spread over many
N-mers, the latter's N-mers may have lower individual courst, and therefore appear
weaker. Nonetheless much insight may be gained from this appch. In particular, if
the sequences contain known motifs, it is simple to determen using this approach, if

these motifs were found.

4.4 Experimental Results

4.4.1 Proling GenBITES Performance and Behaviour

To analyze GenBITES behavior under varying conditions, syhetic data sets were gen-
erated. These data sets were drawn from the Bayesian netwakown in Figure 4.4, with
a background distribution drawn from a third order Markov chain shown in Figure 4.1.
Three simulated experiments were used to evaluate di ereqroperties of the algorithm.

In all cases, the Dirichlet parameter of the PWM, , was set to 0.1.

1. 10 data sets of = 100 relatively short sequences (100nt) were generated,tlwia
single motif of length 8 embedded ipl of the sequences. The fraction of sequences
with motifs, p, was varied in 001 increments from @1 to G99 to generate a total
of 990 di erent subsets, each analyzed separately by GenBtS5. Each subset used

a randomly drawn PWM from the model.
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2. 10 data sets ofl relatively short sequences (100nt) were generated, with angle
motif of length 8 embedded impl of the sequencesl was varied exponentially from
10 to 2560 andp was varied in Q1 increments from 02 to 0:9 to generate a total of
720 di erent subsets, each analyzed separately by GenBITE&ach subset used a

unique randomly drawn PWM from the model.

3. M motifs were embedded in 100 relatively long sequences (DD6X), where M
was varied from 1 to 45. Each subset's PWMs were incremengaliirawn from the
prior (i.e. the m" subset used the same PWMs as then( 1) subset, with one
additional PWM drawn from the prior). The motif inclusion probability was drawn

independently for each motif from aB(5; 5) prior.

GenBITES was run using a single category setting containing single group (non-
discriminative mode). Unless stated otherwise, the follang hyperparameter settings

were used:

The prior on the number of motifs,P(M ), was set to be approximately Poisson

with mode at 2 and 3 motifs.
In the Dirichlet prior on the PWM, = 0:1 for all nucleotides.

A vague Beta distribution was used for the prior on motif inaision probability

P()=B(11)

25,000 iterations of MCMC were discarded during the burn-iphase, and then
100 samples were collected every 250 iterations. 92% of therations performed
Gibbs sampling on the motif positions,T, 6% of the iterations performed sampling
on the motif length (a single motif, chosen randomly and ursimly), and 2% of
the iterations proposed to either add or remove a motif using side chain of 20
iterations (see Section 4.2.3 for more details). Five chamnvere used for each subset

yielding a total of 500 samples for each subset.
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Table 4.1: Hidden Markov model parameters used to generate background

sequences for the synthetic data.

with probability P(pijpi ;P 2P 3)-

90

For a given position,i, the nucleotidep; is drawn

p P(PIAAA ) P(PiCIAA ) P (piGiAA ) P(piT:AA ) p P (piA;GA ) P (piC;G;A ) P (piG;G;A ) P(pjT;G/A )
A 0.243 0.446 0.21 0.119 A 0.137 0.122 0.274 0.215

c 0.0423 0.425 0.212 0.254 c 0.35 0.608 0.192 0.306

G 0.296 0.0557 0.357 0.345 G 0.371 0.0968 0.236 0.0997

T 0.418 0.0733 0.221 0.283 T 0.143 0.173 0.298 0.379

p P (pjA;C;A ) P (pjC;CiA ) P (pjG:CiA ) P(pjT;CiA ) p P(pjAT;A ) P(piC;T;A ) P(pjiG;T;A ) P(pjT;T;A )
A 0.5 0.496 0.47 0.238 A 0.257 0.182 0.239 0.186

c 0.00592 0.0363 0.165 0.157 c 0.459 0.123 0.282 0.365

G 0.423 0.467 0.222 0.232 G 0.0562 0.092 0.0933 0.0524

T 0.071 0.00073 0.142 0.373 T 0.228 0.603 0.385 0.397

p P (piA/AC ) P (piC;AC ) P (pjG;AC ) P(piT;AC ) p P (piA;G;C ) P (piC;G;C ) P (pjG;G;C ) P(piT;G;C )
A 0.424 0.165 0.279 0.158 A 0.321 0.179 0.319 0.255

c 0.0919 0.395 0.246 0.274 c 0.352 0.36 0.307 0.167

G 0.258 0.123 0.368 0.421 G 0.205 0.4 0.0367 0.225

T 0.226 0.317 0.106 0.146 T 0.122 0.061 0.337 0.353

p P (pjA;C;C ) P (pjC:C;C ) P (pjG;C;C ) P (pjT;C:C ) p P (pjA;T;C ) P (piC;T:C ) P (pjG;T;C ) P(pjT;T:C )
A 0.514 0.187 0.36 0.285 A 0.237 0.463 0.17 0.343

c 0.321 0.286 0.501 0.23 c 0.219 0.134 0.216 0.291

G 0.00931 0.404 0.111 0.281 G 0.265 0.289 0.364 0.183

T 0.155 0.124 0.0288 0.204 T 0.279 0.114 0.25 0.183

p P (PIA/AG ) P (pjC;AG ) P (pjGIA'G ) P(pjT;AG ) p P (pjA;G;G ) P (pjC;G;G ) P (pjG;G;G ) P(pjT;G;G )
A 0.353 0.905 0.308 0.171 A 0.353 0.147 0.0132 0.306

C 0.274 0.0715 0.302 0.418 C 0.39 0.474 0.512 0.224

G 0.0426 0.0197 0.364 0.226 G 0.0872 0.0578 0.47 0.279

T 0.33 0.00342 0.0252 0.185 T 0.17 0.321 0.00522 0.191

p P (pjA;C;G ) P (pjC:C;G ) P (pjG;C;G ) P (pjT;C:G ) p P (piA;T;G ) P (piC:T:G ) P (pjG:T;G ) P(piT;T:G )
A 0.271 0.311 0.194 0.222 A 0.0988 0.374 0.0826 0.0928

c 0.0665 0.382 0.182 0.217 c 0.342 0.406 0.11 0.0755

G 0.602 0.241 0.216 0.382 G 0.398 0.00207 0.417 0.207

T 0.0605 0.0659 0.407 0.179 T 0.162 0.218 0.39 0.624

p P(pjAAT ) P(pjC;AT ) P(pjGIAT ) P(pjT;AT ) p P (pjA;G;T ) P(piC:GT ) P(pjG:G:T ) P(piT:G;T )
A 0.522 0.331 0.293 0.132 A 0.42 0.234 0.304 0.3

c 0.162 0.385 0.255 0.258 c 0.262 0.304 0.156 0.393

G 0.123 0.189 0.243 0.296 G 0.263 0.169 0.233 0.169

T 0.194 0.0957 0.209 0.314 T 0.0548 0.294 0.307 0.138

p P(PIACT ) P (piC;C;T ) P(piG;C;T ) P(pjT;C;T ) p P(PIATT ) P(piC;T;T ) P(piGT;T ) P(piT;T:T )
A 0.41 0.303 0.265 0.185 A 0.434 0.183 0.4 0.0683

c 0.132 0.18 0.358 0.361 c 0.16 0.279 0.276 0.441

G 0.0704 0.394 0.217 0.171 G 0.027 0.361 0.216 0.454

T 0.387 0.122 0.16 0.283 T 0.379 0.177 0.107 0.0375
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Figure 4.6: GenBITES performance as a function of fraction of sequences con-

taining the motif for data set 1 (vague inclusion prior). Average posterior prob-

ability of being a motif is shown for nucleotides generatedsing the motif model (\true

positives") and for nucleotides generated using the baclkagrnd model (\false positives"),

as a function of the fraction of the sequences containing tmeotif. Given 100 sequences,

fewer than 10 sequences containing the motif is su cient foaccurate detection.
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Using the above settings, each of the subsets in data set 1 wasalyzed. After
computing the position for each nucleotide in the sequences generated from a motif
model or background, the average posterior over positiongat was generated using the
PWM model (\true positives") and the average posterior prolbility of the nucleotides
being in a motif over positions that were generated using theackground model (\false
positives") were computed and shown in Figure 4.6. Even thgh the motif inclusion
probability was vague, the algorithm is able to correctly idntify the motif with fewer
than 10 sequences containing the motif. Furthermore, GenBES is not confused by the

background, and places very little mass on sequence positithat do not contain motifs.

In the above experiment, the motif inclusion prior was kept @nstant and vague
when analyzing the dierent subsets. To evaluate the e ect bthe prior, two fur-
ther experiments were applied to the data. In the rst, the pror was set such that
if pl sequences contain the motif, the beta prior has a strong mode p by setting
P()=B(pl+1;(1 p)l +1). Inthe second experiment, an opposing prior was applied
to the data sets, where the prior was set to counteract the sigl in the data by setting
P()=B({(1 pl +1;pl+1). A mildimprovement can be seen in the GenBITES
results when using a strong accurate prior, while a strong tioration is evident with
the opposing prior. In particular, no motifs are detected wh p 0:18, and strong pos-
terior probability on the nucleotides being part of motifs & only evident forp  0:3. At
that point, the prior is not as opposing as at lower values g, and the stronger signal
helps successful detection. At higlp values ( > 0:8), the posterior probability drops

signi cantly, but stays strong nonetheless.

To quantify the e ect of the di erent priors on successful maif detection, it is possible
to use the posterior as a tunable threshold for decision mailg, and thereby generate a

ROC curve?, as shown in Figure 4.7. It is important to note that the high alues may

2ROC curves are used for evaluating classi ers by plotting sasitivity against 1-speci city as a function
of a decision threshold. The area under the curve can serve &s single measure of the quality of the
classi er, where a random classi er has an area of 0.5, and péect one has an area of 1.
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be somewhat misleading due to the large number of \negativegucleotides generated
from the background). For example, atp = 0:09, the area under the curve is 0.87,
suggesting reasonably good classi cation. However, setyi the threshold to achieve 0.5
sensitivity (i.e. half of the motifs' nucleotides are detected) yields 0.99 epi city, but
the number of false positives is 3.5 times that of the true pitives (1239 as compared to
361). Nonetheless, it can be seen in Figure 4.7 that fpr 0:15, accurate classi cation
is achieved with a vague motif inclusion prior, dropping to @und 0.1 with an accurate
prior. With an opposing prior, a strong signal is required ath accurate classi cation is

possible only aroundp  0:3

Data set 2 was analyzed using the parameters discussed inti®ec4.4.1. As seen in
Figure 4.8, as little as 20 sequences is enough when the miabundant, though 40 or
more sequences may be required when the motif is rarer. Ongmim, GenBITES used a
vague motif inclusion prior, and one should expect fewer sggnces to be required if an

accurate prior is used.

Finally, data set 3 was analyzed, again using the hyper-pareeters described above.
However, to accommodate the increasing number of motifs, @fprior on the number of
motifs was set to a geometric distribution with parameter ®. As seen in Figure 4.9,

GenASAP had no di culty in accurately identifying the embedded motifs.

Admittedly, the synthetic data sets discussed in this sean were generated from
the model, simplifying the analysis since the model's assptions are guaranteed to be
correct. One should not, in general, expect the algorithm tperform as well on real
data. Nonetheless, this analysis proves the potential of GBITES, and its adaptability
to limited or increased amount of data. Additionally, giventhe right parameter setting,

it is possible to detect even very weak signals.
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Figure 4.7: Area under the curve for data set 1 with three settings for the

prior on motif inclusions. For each the three experiments on data set 1, the area
under the ROC curve is computed as a function of the proportio of the sequences
that contain the motifs. A strong and accurate prior on the mdf inclusion is helpful
and enables somewhat better motif detection over vague pricA strong opposing prior
greatly hinders the classi cation when the signal is weak, Ut has little e ect when the

motif appears in a large proportion of the sequences.
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Figure 4.8: GenBites performance as a function of the number of input se-
guences. Using a vague prior, GenBITES requires fewer than 20 sequesdo accurately

detect abundant motifs, and fewer than 40 sequences to catlg identify rare motifs.
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Figure 4.9: GenBITES performance as a function of the number of motifs
present. Even as then number of present motifs increase, GenBITES ibla to success-
fully detect all the embedded motifs. A slow rise is seen in ¢haverage posterior of false
negative, and a corresponding slow drop in the average paste of the true positives
can be observed. However, those may have more to do with thegeron the number of

motifs (geometric), and a con dent and accurate prior may &bw for a better posterior.
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4.4.2 Benchmarking GenBITES

In 2005, Tompaet. al. designed a benchmark data set consisting of sequences estzd
from promoter regions of mouse, human, yeast, and y [111].hE data set consisted of
real sequences, extracted without change from genomes awataining known TRANS-
FAC motifs; generic sequences, where a known motif was emded into a real promoter
region of the designated species, but which is not known tortain the motif; and random
sequences, where a known motif was embedded into generatgotisetic sequences. In
total 56 data sets are available, containing from 1 to 35 seences, with 23 sets containing
fewer than 5 sequences, and 45 containing fewer than 10 sew@s. The sequences are
typically long, consisting of 500{3000 nucleotides.

The results and performance of 13 motif nding algorithms we reported by Tompa
et. al. . To provide fair comparisons, each algorithm was applied ihe group who rst
designed and implemented it. All the methods compared in th@ssessment are reviewed
in Section 2.6.2. Each algorithm must report the single mostominant motif found for
each data set (if any) by identifying the positions of that mdf in the sequences.

There are seven statistics that are collected based on thepmted results. The rst
four are nucleotide level statistics, independently corggring each nucleotide in the se-

quence:
1. nTP is the number of nucleotide positions in known binding sitethat are correctly

predicted to be part of a binding site by the algorithm.

2. nFP is the number of nucleotide positions not in known binding &s that are

predicted to be part of a binding site by the algorithm.

3. nFEN is the number of nucleotide positions in known binding sitethat are predicted

to not be part of a binding site by the algorithm.

4. nTN is the number of nucleotide positions not in known binding ®&s that are

correctly predicted to not be part of a binding site by the algrithm.
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Statistics 1, 2, and 3, abover were also collected at the sitevel. To determine if a
binding site was correctly predicted, a predicted motif musoverlap with the site by
at least 1=4 of its length. Note that at the site level, it is unclear how 6 count \true

negatives”, and this statistic is not collected:
4. sTP is the number of correctly predicted known biding sites.
5. sFP is the number of predicted binding sites not overlapping wit known ones.
6. sFN is the number of known binding sites not predicted by the algahm.

The above statistics are combined to form the following ewvation criteria, where x

represents eithem, for nucleotide level statistics, ors, for site level statistics:
1. Recall (sensitivity): xSn = XTP=XTP + xFN)
2. Precision (positive predictive value)xPPV = xXTP=XTP + xXFP)

Recall and precision can be de ned at both the nucleotide lel’and binding site level.

In addition, Tompa et. al. de ne the average site level performance as
3. Average Site PerformancesASP = (sSn+ sPPV)=2

and nally, at the nucleotide level
4. Specicity: nSp= nTN=(nTN + nFP)
5. Performance Coe cient: nPC = nTPnTP + nFN + nFP)

6. Correlation Coe cient: nCC = p nfP nTN nFN nFP
(NTP+nFEN )(nTN +nFP)(nNTP+nFP )(nNTN +nFN)

The benchmark was run with the following hyperparameters:
1. =01

2.P(M)=0:9" 01
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3. P( )= B(80;20) (i.e. the mode is at =0:8)

4. 5 chains were run for each data set, discarding the rst 5000 iterations as burn
in, and keeping a single sample once every 200 iterations &total of 250 samples.
10% of the iterations were used for sampling/ and 5% of the iterations were used

for samplingM .

As noted above, each benchmark must report the single mostgdar motif for each
subset evaluated, if any motifs were found. To select the ntogopular motif found by
GenBITES for each sequence, the most popular N-mer (see $a&tt4.3.1 and Figure
4.5b for details) was determined. The posterior was then duated only for those motifs
for which the N-mer was included as a binding site. The bindmsite posterior pro le
(as seen in Figure 4.5a) must then be thresholded to make a Hadecision for which
positions in the data are potential binding sites. A reasoride number for this threshold
would be in the range of @l { 0:2, since (a) the posterior has already been lItered to
consider only motifs containing the most popular N-mer, andb) sequences containing
2 (or more) binding sites would have the posterior split beteen the two, resulting in a
maximum value of 05 (or less). However, the results presented here consideramge of
threshold from O (everything is a binding site) to 1 (nothings a binding site), with 0:01
increments, to generate performance curves.

Interestingly the results presented below do not change muevhen the full posterior
is considered (data not shown). The thresholds at which sitar performance is observed
are predictably somewhat higher, as no ltering is applied.This is because, for those
subsets for which motifs were found, most mass is placed in fif® that either contain
the most popular N-mer, or N-mers very similar to it (usuallyshorter/longer).

The results of the algorithms analyzed by Tompat. al. are available onhttp://bio.
cs.washington.edu/assessment/  (last accessed April 11, 2009), and can be compared
to the results of GenBITES. Figure 4.10 shows the precisior@call curve for GenBITES,

as compared to the performance published for other methodsA comparison on the
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Figure 4.10: Precision/Recall comparisons of GenBITES and other method S.

A full precision/recall curve is available for GenBITES, wiie other algorithms are rep-
resented by a single point on the graph based on their publisti results. The further
a method is to the upper-right corner of the graph, the betterts overall performance.
GenBITES outperforms all previous methods except Weeder.t is possible to oper-
ate GenBITES at a level with better site-level precision or étter site-level recall than

Weeder, but not both.
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remaining evaluation criteria used by Tompeet. al. are shown in Figure 4.11. With the
exception of the Weeder algorithm, GenBITES outperforms bbther algorithms in every
evaluation criterion save performance coe cient, where iis nonetheless among the top
performers. It is possible to operate GenBITES at a level witbetter site-level precision
or better site-level recall than Weeder, but not both. The rmarkable performance of
GenBITES is even more impressive when one considers that ae&s not explicitly model
multiple occurrences of individual motif per sequence, ldeng to no predictions in any

subset with less than 6 sequences (43 sequences out of 56).

The numerical values of the results appear low (precisionmgrally lower than 0.2 and
recall lower than 0.5), and Tompeet. al. provide an explanation in the original study [111].
In short, the low scores are the result of the lack of grounduth and setup restrictions.
The lack of ground truth means that algorithms may detect mafts that, while not the
motif which was expected to be found, are true binding sitesonetheless (in real or generic
sequences). In addition, many of the motifs extracted fromhe TRANSFAC database
are long (up to 71nt), while the true binding sites may be muclshorter, contributing to
low recall scores. The setup restrictions meant that eachgarithm may report only a
single enriched motif for each subset, and were not alloweal tise secondary information,
such as secondary structure or comparative genomics (camnsg¢ion), which are known to
greatly help direct motif detection. Finally, no discriminative analysis was utilized, and

each subset was to be analyzed independently.

It is curious to note Weeder's exceptional performance. Wi clearly surpassing
all other algorithms in every criteria, usually by a large megin, Tompa et. al. do not
unequivocally claim it is better than the other published ajorithms. Weeder uses a
model very similar to that of MITRA, yet is unmatched by any ofthe algorithms, while

MITRA is an average performer.
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Figure 4.11: Other evaluation criteria for benchmark results.

The curves gen-

erated by varying the threshold cuto for GenBITES comparedto results published

for other methods on benchmark data set. In general, at openag level of 01 { 0:2,

GenBITES outperforms most other methods. GenBITES has high speci city than all

other methods when operating at that range. However, sincdl anethods have very high

speci city, it serves as a less useful evaluation criteria.
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Table 4.2: Group sizes for AS sequence data set. The number of AS events in each

of the four groups de ned for AS motif analysis.

CNS | Muscle | Embryo | Other

Increased skipping| 152 200 302 250

Increased inclusion 211 203 215 264

No change 2637 | 2597 2483 2486

4.4.3 Alternative splicing data

In Section 3.2, the mouse 44k microarray data set was introded (MM44k). This data
set was used to search for potential binding sites in the ex®m@and surrounding intronic
regions. Four major tissue groups were recognized, and A®ets were assigned as either
di erentially spliced (increased inclusion or increasedk#pping) for that group, or \no
change" if the event was either not expressed in that groupy exhibited similar splicing
as that seen in other expressed tissues. The four tissue gueuare: central nervous
system (CNS), consisting of brain tissues, spinal cord, argle; muscle, consisting of
heart, tongue, skeletal muscleetc; embryonic tissues; and \other", consisting of various
internal organs, teeth, mammary gland, and other tissues honatching the rst three
groups.

The analysis to classify each AS event is described in detalsewhere [10]. Briey,
Yoseph Barash of the PSI lab at the University of Toronto degned and implemented an
algorithm based on factor analysis, where the choice of facs to use and data to model
is sparse. Priors on the data, based on expression level,@nsthat only relevant probes
containing meaningful signals are analyzed by the algorith (low expressing probes have
low, if any, signal content, as seen in Section 3.4.3).

For each AS event, ve sequence regions were analyzed, asnseerigure 4.12:

1. C1: Constitutive exon upstream of the skipped exon. If the exowas longer than
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11

C1l /a A | i C2
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Figure 4.12: AS sequence regions analyzed by GenBITES. For each AS event,
seven regions were analyzed as shown. Each of the three exawslved in the AS event
was included in its entirety if under 600nt. For longer exongegions further than 300nt
from the nearest splice site were not analyzed. Each of then&ing introns was split into

two sections of length 300nt anking the exons.

600nt, regions further than 300nt from either splice site we not analyzed.
2. 11: 300nt immediately upstream ofA.

3. A: The alternative exons. If the exon was longer than 600nt, geons further than

300nt from either splice site were not analyzed.
4. 12: 300nt immediately downstream oA.

5. C2: Constitutive exon downstream of the skipped exon. If thexen was longer

than 600nt, regions further than 300nt from either splice & were not analyzed.

Each region was analyzed against three data sets for each loé four tissue groups de-
scribed above, composed of positive and negative exampl&be positive examples were
comprised of increased inclusion events, increased exdusevents, and both (\change"),
as compared to the negative examples of \no change" events tbtal 60 data sets were
analyzed (5 regions, 4 groups, 3 de nitions of positive/negive events).

There are a number of known alternative splicing motifs badeon targeted studies,
as well as the ones mentioned in Section 2.6.3. To determima iknown motif was found,

the N-mer counts were rst summarized as shown in Figure 4.5bThe known binding
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targets of the AS factors were then summed up and compared tbet total number of

N-mers detected in each region.

Polypyrimidine tract-binding protein (PTB) is a known tissue-speci ¢ splicing fac-
tor that binds to CT-repeats in the I1 region to suppress spting. The neural
variant, nPTB, acts as a splicing enhancer, leading to the psence of CT-repeats
in the upsteam intron to be associated with increased inclis in brain tissues
[4]. As expected GenBITES detects a strong signal in the 11 g®n \CNS" in-
creased inclusion events, while no other strong signals wefiound for the pattern

YTCTCTY.

Fox-1 and Fox-2 are two known proteins involved in alternatie splicing regulations.
The presence of their target binding sequence, GCATG, in thatron upstream of
an alternative splicing (I11) has been shown to be linked witincreased inclusion in
brain tissues [123]. Curiously, the top n-mer count appeais the downstream in-
tron, 12, in \CNS" increased inclusion events. The second anthird most common
detection of this binding site were in \other" increased skiping events in the 12
intron, and in embryonic \change" I1 intron respectively. t is not currently known

if Fox-1/Fox-2 play a role in di erentiating splicing events during embryonic devel-
opment, nor is it known if its binding site, when found in the dwnstream intron,

play a role in CNS or non-CNS tissues.

Analysis of the I1 region reveals the reason GenBITES failed detect the Fox
binding site where expected (11, \CNS" increased inclusign Using the available
group de nitions, 60 of the 211 sequences (28%) in the \CNShcereased inclusion
group contain the Fox motif. In contrast, 640 of the 2636 seguces (24%) in the
no change group contain the motif. The enrichment is not sigeant by Fisher

exact test (p-value of 0.10).

TIAL is a known splicing factor that binds to T-rich regions n the downstream
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intron. It is associated with various muscular processeselt morphology and mi-
gration, and RNA metabolism [6]. GenBITES successfully detts the known maotif,
and U-rich motifs, where at least four out of 5 consecutive wieotides are T, have

a strong signal in the 12 region of \muscle" and \CNS" increasd inclusion events.

In addition to the known motifs mentioned above, John Calam of the Blencowe Lab
at University of Toronto, conducted an extensive study of exn 16 in the Damml gene,
which was found to be CNS regulated [10]. Figure 4.13a showeetposterior probability
given by GenBITES, aligned to the 300nt upstream of exon 16X, highlights the regions
that were mutated in the experiment. A series of minigene r@pters were designed to test
the function of ten separate regions. With the exception ofgions 3, 5, and 10, all other
mutated regions have some mass in the posterior inferred bye@BITES. It should be
noted that these regions were not selected based on the résydrovided by GenBITES,

resulting in the strong signal in positions -29:-11 not begqtested.

The reporters were transfected into neuronal mouse cells ZN cell line) as well as
into non-neuronal cells (NIH-3T3 cell line) RT-PCR assays &re performed to test for

e ects on exon inclusion levels in each reporter.

While none of the ten substitutions a ected the non-neuroniecell lines, six out of the
seven regions predicted by GenBITES had substantial e ectnosplicing of exon 16 in the
neuronal cells, as shown in Figure 4.13b. Regions 3 and 5 weetected to act as control
regions, and show a reduced impact on AS. Region 10 represetiite binding target for
Fox, which GenBITES did not detect to its lack of signi cant dgnal (see above), yet
is shown to have substantial impact on AS. Curiously, while atating regions 7 and 8
individually a ect splicing, the combination of mutating regions 7, 8, and 9 together
signi cantly reduces exon inclusion levels, suggesting dhthe factors binding to these

sites may operate antagonistically.
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Figure 4.13: GenBITES predictions and PCR analysis of Daaml exon 16. (@)

The results from GenBITES analysis of the I1 region of Daamlxen 16. The white
bars represent the posterior of the analysis, with taller bia representing stronger signals.
The sequence is shown, and the colored boxes correspond te thgions mutated and
analyzed by PCR. (b) Each of the marked regions was mutatednéd the e ect on splicing
for both neuronal and non-neuronal cells is shown. None ofeghmutation had any e ect
on splicing for the non-neuronal cells. In general, the GehBES predictions agree closely

with the PCR results, and mutating predicted regions signicantly a ects splicing.
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4.5 Summary

This chapter has introduced a novel Bayesian algorithm foribding site detection. Gen-

BITES is based on a principled probability model and an exactampling procedure to

e ciently infer the full posterior of binding site probabil ities. Despite a plethora of motif

nding algorithms proposed over the past decade, GenBITESrpsents several innova-

tions that enabled it to outperform most existing algorithns on a benchmark data set

(Section 4.4.2).

1. Exact and extensive sampling. While many existing algghms use sampling for

motif detections, few apply it correctly based on a princigd probability model
(the original Gibbs sampler is a notable exception). Furthenore, these algorithms
generally apply heuristics to determining the number and wlth of the motifs,
generally electing to return a con guration that is \most likely" in some sensed.g.

the MAP con guration when a probability model is de ned).

. Focus on binding sites instead of motifs. As the name of tregorithm suggests,
GenBITES focuses on detecting potential binding sites ofgelatory factors, rather
than motifs. By not con ning the output to return a single consensus sequence
or PWM model, GenASAP is able to provide a comprehensive mag potential
binding sites for a sequence, as demonstrated by the ana$ysf the upstream region
of Daaml exon 16 (Figure 4.13). Limiting the results of the atysis to a discrete
number of well de ned motifs would have certainly missed manof the weaker but

signi cant signals in that region.

. Explicit use of negative examples in a probability modelThe practice of using a
negative set to reveal motifs that distinguish a group of segnces that share com-
mon expression or splicing behavior from other sequencewidespread. Algorithms
employing this methodology have exclusively relied on stiatical or discriminative

approaches when using negative examples. GenBITES reprasehe rst explicit
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use of multiple group de nitions in a generative probabiliy model. This approach
has proved crucial when analyzing the alternative splicingata set, for example,
without which features that are common to all introns and exos are returned,

rather than those that are unique based on the group de nitio.



Chapter 5

Discussion and Conclusions

In this thesis, the use of graphical models for analyzing Bagical data was demonstrated.
While the focus of the biological analysis was on alternagvsplicing, many of the tech-
niques explored here are applicable to other types of data.eRoving spatial trends in
microarray data (Section 3.1), for example, is a universalr@processing step for microar-
ray data, regardless of the objective of the study. Similay] GenBITES has been applied
to a benchmark designed from transcription data and was demsirated to be one of the

top performing algorithms (Section 4.4.2).

Generative probability models are inherently well suitedd studying biological data.
Due to the nature of the experiments, it is rarely possible tdirectly measure the quantity
of interest. More often, the data obtained is measuring the ect of biological processes,
while it is the causesand processesthat lead to the observations that are of real in-
terest. For example, in Section 3.2, the microarray platfon for studying alternative
splicing was introduced. lIdeally, the quantities of varios isoforms would be measured
directly for further analysis. The quantities actually beng measured, however, are noisy
observations of exon and junction expressions. These uneb&d processes and causes
can be e ectively modeled using generative models that acoa for measurement error,

molecular interactions, and inherent stochasticity in theprocesses.

110
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In Chapter 3, early attempts to achieve large scale quantitaeee measurements of al-
ternative splicing were discussed. The GenASAP algorithmasg instrumental in achiev-
ing accurate estimates of relative isoform content in vanes tissues and conditions.
GenASAP describes the hidden causes behind the microarrayeasurements, includ-
ing uncertainty and noise characteristics. As shown in Figa 3.8, GenASAP remains
one of the best estimators of relative exon skipping conteffitased on microarray data.
Thanks to advances in microaray fabrication and analysis ¢tenology, however, measure-
ment error and cross hybridization has been signi cantly muced over the years, and
simple, direct calculation can now generate predictions ggarable to those generated
by GenASAP. Nonetheless, GenASAP enabled many studies to benducted, and con-
clusions to be drawn at a time when no other method was availlbto analyze accurate

large scale quantitative alternative splicing data.

In contrast to the pioneering work conducted using GenASAotif nding is a prob-
lem as old as the eld of computational biology, with a plethea of algorithms proposed
in the past two decades. While some of these algorithms havednm based on graphical
models, few have taken a principled approach to deriving theccompanying algorithms,
and most rely on heuristics. Additionally, motif nding algorithms are commonly ex-
pected to return a concise list of well de ned motifs (eitheusing a consensus sequence
or PWM format). As seen in Chapter 4, GenBITES uses a generaé probability model
to represent the observed sequences as a combination of fisoind background com-
ponents. Rather than rely on heuristics to determine the nuber and length of motifs,
it incorporates those components into a Bayesian framewqrind carries out exact in-
ference using an e cient MCMC sampling algorithm. By utilizing the entire posterior,
rather than distilling the results into list of PWMs, GenBITES is capable of capturing

many sequence features of interest.
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5.1 Future Directions

Computational algorithms for sequence analysis and motifetiection are still nding only
a small fraction of the true binding sites, while at the sameiine agging non-functional
elements as motifs, as seen by the benchmark results in Sectd.4.2. GenBITES has
demonstrated that a principled model coupled with an exactlgorithm is a powerful

approach to motif detection.

Multiple Motif Occurrences

The main limitation of GenBITES is its inability to model multiple instances of a motif
in a single sequence. A small modi cation to the algorithm pmrsented in Section 4.2
can handle a model with multiple motif instances per sequeac Recall that the motif
position indicators, T;.,, are scalar variables pointing to the position of the motim in
sequenca. These may be replaced by a vectdd; of the same length as the sequence
where each elemenB;; indicates which motif (if any) begins at that position. The same
non-overlap constraints as those used fdr can be imposed, and Gibbs sampling may be
performed for possible motifs at each position, rather thafor the position of each motif.

There are a few issues that need to addressed, however:

1. The prior onB. There are two priors that seem appropriate in this contextFirst is
the binomial prior, where each positionB;., is independently the start of one of the
M motifs (or none) with probability proportional to p,,. The second intuitive prior
is the geometric prior, where the positions of the motif is uformly distributed
once the number of instances of the motif has been generatednfi a geometric

distribution.

2. One important feature of GenBITES was the assumption thathe probability of
adding more motifs to a sequence than its length would allovs inegligible. This

assumption was instrumental in deriving the functionD and was safe, so long
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as the number of motifs in a sequence was limited by the numbef motifs and
their lengths. However, if each motif can appear multiple thes in a sequence,
this probability may not be negligible, and will consideraly a ect the function D.

Computing this e ect is not trivial.

3. GenBITES additionally assumes a uniform prior on motif psition within a se-
guence. With multiple motifs, it may become important to moel position de-
pendence within the sequence. Again, this will have a constéble e ect on the

partition function, which would have to be accounted for.

Modeling multiple occurrences of individual motifs is onlycritical in a couple of
scenarios. The rst is when very few sequences are availabled each motif is expected
to appear multiple times within each sequence. When enougkaiences are available
(10-20 su ce based on the synthetic data and benchmark redslin Sections 4.4.1 and
4.4.2), GenBITES in its current incarnation is able to samm@ from the resulting multi-
modal posterior e ciently. The second scenario is when theumber of motifs occurring
in each sequence is more informative than whether or not theppear in the sequence
(e.g. Nova splicing motifs [112]). Unfortunately, in this case, @ amount of data help

GenBITES, and explicitly modeling multiple motif occurrerces is necessary.

Positional Bias

Currently, GenBITES motif occurrence prior is uniform acrgs the sequence, as seen
in Equation (4.1). However, there are many factors that may & incorporated to form

positional bias, such as:

1. Secondary structure: although commonly presented as adar sequence, RNA
molecules typically bend and self-hybridize to form what i&known as secondary
structure. Tools are available that predict RNA secondarytsucture based on the

sequence [26, 73].
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Figure 5.1: Incorporating side information in GenBITE. Information about RNA
secondary structure,R, phylogenetic conservation,C, and discriminative features,F,
and potentially others can be incorporating them into GenBIES by including them as
additional observed leaf nodes. The unobserved variableswain the same as the current

GenBITES model shown in Figure 4.4.

2. Phylogenetic conservation: comparative genomics prde information regarding
the conservation of sequence elements across species. dfeiserally accepted that

highly conserved sequence regions tend to be functional.

3. Discriminative sequence features: it is possible to desna set of sequence features
and train a discriminative model to recognize sequence regs that are likely to

contain binding sites, as is done by th&riority algorithm [75, 76].

The major diculty in setting a positional prior arises in correctly computing the
partition function in Equation (4.1). Due to varying positional weights,D is no longer a

single combinatorial computation.
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An alternative to explicit positional bias can be found in tle generative model frame-
work. Any of the above information can be added as observedales to the Bayesian
Network, and properly settingP (RjT; W), P(CjT; W), and P (F|T; W), for the secondary
RNA structure, conservation, and discriminative featuresespectively, as shown in Figure
5.1. Forinstance,P(CjT; W) is set based on the conservation analysis to be high in bind-
ing sites (regions of the sequence covered By, and ambiguous in regions not covered by
binding sites. The rational, of course, being that bindingiges are well conserved across
species, while background elements may or may not be consetv Similarly, P(FT; W)
can be set based on the features' ability to discriminate beeen binding sites and back-
ground elements. Incorporating secondary structure woulequire careful consideration,
as several e ects are possible. Are some motifs only e eati\as binding sites in conjunc-
tion with particular secondary structures? Are some secoady structure act to suppress
or enhance the function of certain motifs as binding sites?hE answers to these questions

are not obvious, and further study would be required to besttilize the information.

5.2 Final Remarks

As the eld of computational biology ventures forward, and ew forms of data become
available, new analysis tools will need to be designed. Algbms based on graphical
models have been proven to be e ective and provide meaningfand informative results.
With the help of algorithms such as GenASAP and GenBITES, theeld of alternative
splicing has seen considerable progress in the past few gaararacterizing global behavior
of splicing, evolution, regulation, and RNA processing [&0, 19, 32, 40, 54, 82{85, 121]. As
collaborations between those who generate large biolodidata sets, and those with the
tools to analyze them deepen, the e ectiveness of large ssatudies will continue to
increase, and the secrets of the human body will not remaindden from mankind for

long.



Appendices

116



Appendix A

Variational Updates for GenASAP

The free energy of GenASAPV1, based on the equations in Seati3.3 and the structured

Q distribution is

Z
X X Q(s;0;r1)
F(QP)= 0N log >
(Q;P) o Q(s;0;1)log 5 (5.0.1 %)
X X X X X
- i 109 i + i liro 109! o + (A.1)
i r Z i r )
X X X

ir  lino  Q(sjo;r) [logQ(sjo;r)  logP(s;0;r;x)]:

i r o
Before the integral is expanded in the above equation, sometation needs to be de ned.
First, the subscriptsi, r and o are dropped to simplify the math. Additionally, the
symbols s and 2 are used to indicate that two vectors are multiplied and diwded

element-wise respectively (as in Matlab's .* and ./). Findy, the following symbols are

used as de ned below:

= diag( ) is a vector containing the diagonal elements of the diagoheovariance
matrix, 9.
=N -;0;1 (Normal PDF evaluated at -).
R_
= = i N (X;0;1)dx (Normal CDF evaluated at -).

E[s]= + -.
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Using the above de nitions, the integral in Equation (A.1) @n be written as
z

Q(sjo;r) [log Q(sjo;r)  logP(s;0;rx)] = Fo =

S

C+ log( )+2—+% O +
X 1, 2
. [Oi =l] Iog it §|OgV,+ 2—Vi()(i 2XiE+ E) +
' 8
2 X >
X [oi — O] 2 Iog(l i) + % |Og it |Og RI‘ + 5 XiIRZ '2 IiER[S]+ =
> ; > S . o>
i z % i E[S]E[s]” + diag (—)(—)  (—)(—) >
(A.2)

where C is a constant term that does not depend on the parameters ortéat variables.

E step

If the prior on s was a full normal distribution, there would be no need for a vational
approach, and exact EM is possible. For a truncated normal stribution, however, the
mixing proportions, Q(r)Q(ojr) cannot be calculated analytically except for the case
wheres is scalar, necessitating the diagonality constraint. Notéhat if was allowed to

be a full covariance matrix, the su cient statistics of Q(sjo;r) are given by:

=1+ (@ 0y Y o)) ¢ 0y Ix? (A.3)
w =+ ~(1 0y (I 0)) (A4)
where O is a diagonal matrix with elementsO;; = o. Furthermore, as shown in Sec-

tion 2.2.2, the optimal settings for 9 and ¢ approximating a normal distribution with

full covariance and mean is
gptimal = (A-5)
Gima = diag( %) (A.6)

In the truncated case, equation (A.6) is still true. HoweverEquation (A.5) does not hold,

and .. cannotbe found analytically. It was experimentally found hat using equation
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(A.5), which is a good approximation when > 2 , can be used to achieve meaningful
results, and it is signi cantly more e cient than using, for example, a gradient decent

method to compute the optimal ¢.

The rest of the variational parameter can be optimized by dierentiating the free

energy with the appropriate constraints to obtain the updags:

expfF
|, = pXPIT e (A7)
P 0expfFPr;og
_ Pexpf P! rFr;o !D! rlog! g (A.8)
. expf ol rFro o'rlog!.g
M step
The parameter updates can be obtained through direct di ertiation:
@@pP _X X X _h Xix Elsdr; oF , 2 iV[sqr; o'
@i t r It . = I 05t 2 iRr 2 ;
hx X = X | ih x X X i, (A9
i = it i o;tXRL:E[StJ-r; o 2 i;rt i 0 V[sijr; 0]
t r [0} h t r 0 )
py X X X X2 xi, iE[sir; . !
@ (Q;P) - - o 1 iit Xi, iE[sir; o] + 1 V[sr; o] 7
@ ! " not 2 2R? 2R 2 '
pp ' P *h r i
2 iy iElstjn ; >
tr o int 0! i, ot % %[FSHO] + V[sir; 0] i
| = ' | .
t* Lot
(A.10)
where

V[sijr; o] = E[sijr; o]IE[sijr; o] +
|

diag

(r;o;t r,o;t r;o;t)( r,o;t r,o;t r;o;t)>
rost rost
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@@p)_X X X Xk x Elsinol
@Rl t | it . Lot r R, 2
Which can be solved by the quadratic equation where:
X X
ar = it Ui o
Y (A.11)
br = o it ! i O't—Xi;t | Elsujrio=0) .
3 05 2
t i
X X 2
G = it D ot I'ti and
t
h+ B dac
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