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Abstract

There is a growing interest in building prob-
abilistic models with high order potentials
(HOPs), or interactions, among discrete vari-
ables. Message passing inference in such
models generally takes time exponential in
the size of the interaction, but in some cases
maximum a posteriori (MAP) inference can
be carried out efficiently. We build upon such
results, introducing two new classes, includ-
ing composite HOPs that allow us to flexibly
combine tractable HOPs using simple logi-
cal switching rules. We present efficient mes-
sage update algorithms for the new HOPs,
and we improve upon the efficiency of mes-
sage updates for a general class of existing
HOPs. Importantly, we present both new
and existing HOPs in a common represen-
tation; performing inference with any combi-
nation of these HOPs requires no change of
representations or new derivations.

1 INTRODUCTION

Probabilistic graphical models are powerful tools due
to their representational power, and also due to general
purpose algorithms that can be applied to any (low or-
der) graphical model. For a broad range of problems,
we can formulate a model in terms of graph struc-
tures and standard potentials. Then, without further
derivation, we can automatically perform inference in
the model. In particular, when the aim is to find a
most likely configuration of variables (MAP), a range
of efficient message passing algorithms can be applied
(Wainwright et al., 2005; Werner, 2008; Globerson &
Jaakkola, 2008).
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When potentials begin to range over a large subset of
variables, however, these methods quickly break down:
for the general problem, message updates from a high
order clique take time exponential in the size of the
clique. One approach in such cases is to transform
the problem into a pairwise problem by adding aux-
iliary variables. In the worst case, this will increase
the problem size exponentially. Rother et al. (2009)
define transformations that make tractable the spe-
cial case of sparse potentials. Alternatively, special-
purpose computations can sometimes be performed
directly on the original high order—typically factor
graph—representation (Givoni & Frey, 2009), which
is the approach we take in this paper. This strategy
applies beyond sparse potentials and is applicable for
a wide range of special potential structures. Unfortu-
nately, for a given potential it is typically not imme-
diately clear whether it has tractable structure. Even
if it does, message updates are case-specific and must
be specially derived.

Our goal is to be able to use a broad range of high
order potentials (HOPs) generically within MAP mes-
sage passing algorithms as easily as we use low order
tabular potentials. We see three issues that must be
addressed:

1. Message updates need to be computed efficiently
even when factors range over very large subsets.

2. It should be easy to recognize when problems con-
tain tractable high order structure.

3. HOP constructions should be flexible and re-
suable, not requiring new problem-specific deriva-
tions and implementations on each use.

In Section 3, we describe two classes of atomic, build-
ing block HOPs, cardinality and order. Cardinality po-
tentials have been used in several related works, and ef-
ficient message computations exist for both the general
case and several restricted classes. Our first contribu-
tion, however, is showing that the efficiency can be
improved even beyond existing efficient computations



HOP-MAP: Efficient Message Passing with High Order Potentials

(Potetz, 2007; Tarlow et al., 2008). Our algorithm
computes all messages in O(N logN) time, a factor of
N

logN better than existing approaches. For the novel
class of order-based potentials, we present equally ef-
ficient algorithms. For the atomic potentials we con-
sider, finding the optimal assignment takes O(N) or
O(N logN) time. We show that our algorithms can
compute all N outgoing messages in the same asymp-
totic time.

Next, analogous in spirit to disciplined convex pro-
gramming, which allows many of the manipulations
and transformations required to analyze and solve con-
vex programs to be automated (Grant et al., 2006), we
introduce two types of composite HOPs, which allow us
to build more complex HOPs by applying composition
rules based on maximization or simple logical switches.
A complex HOP can be recognized as tractable by
decomposing it into atomic tractable units combined
with allowed composition rules. Importantly, once ex-
pressed as a composition, the message updates of com-
posite HOPs can be computed automatically from the
message computations of the atomic HOPs.

Our final, more subtle contribution is the particular
binary representation, message normalization scheme,
and caching strategy for computing all outgoing mes-
sages from a factor at once. This “framework,” which
we refer to throughout, is not novel, but it is also not
the standard. Each part has a purpose: the binary rep-
resentation exposes more structure in potentials; the
message normalization scheme yields simpler deriva-
tions; and the caching strategy leads to more efficient
algorithms. It should be straightforward to apply this
strategy to other structured potentials to build new
atomic building block HOPs.

Section 4 shows that well-known and novel graph con-
structions are easily expressible using the vocabulary
of potentials discussed, and that once a model is ex-
pressed in this framework, it can be used in a variety
of MAP inference procedures. In Section 5 we present
experimental results that illustrate the ease of con-
structing models of interest with this formulation.

2 REPRESENTATION

We work with a factor graph representation, which is
a bipartite graph consisting of variable nodes, h =
{h1, . . . , hn}, and factor nodes. Let N (hj) be the
neighbors of variable hj in the graph. Factors, or
potentials, θ = {θ1, . . . , θn, θn+1, . . . , θn+k}, define in-
teractions over individual variables hj and subsets of
variables C = {c1, . . . , ck}, c ⊆ {h1, . . . , hn}, which
are exactly the factor’s neighbors in the factor graph.
With slight abuse of notation, and restricting our-
selves to binary variables, we use θj to represent node

potentials over single variables, and θc to represent
HOPs over subsets. θj : hj ∈ {0, 1} → R and
θc : hc ∈ {0, 1}|c| → R assign a real value to a variable
or subset assignment, respectively. The potentials we
present can range over any number of variables, so we
use N to generically represent |c|.

A factor graph, then, defines a (log) likelihood that
takes the form

L(h) =
n∑
j=1

θj(hj) +
∑
c∈C

θc(hc) (1)

The MAP inference problem—to find a setting
of h that maximizes the likelihood hOPT =
arg maxh L(h)—is NP-hard for general loopy graphs,
and we typically must resort to approximate optimiza-
tion methods.

2.1 MAP MESSAGE PASSING

Max-product belief propagation (MPBP) is an itera-
tive, local, message passing algorithm that can be used
to find the MAP configuration of a probability distri-
bution specified by a tree-structured graphical model.

When working in log space, the algorithm is known as
max-sum, and the updates involve sending messages
from factors to variables,

m̃θc→hj (hj) = max
hc\{hj}

θc(hc) +
∑

j′∈c|j′ 6=j

m̃hj′→θc(hj′)

 ,

and from variables to factors, m̃hj→θc(hj) =∑
c′∈N (hj)\c m̃θc′→hj (hj). After a forward and back-

ward pass sending messages to and from a root
node, optimal assignments can be decoded from
beliefs, hOPTj = arg maxhj b(hj), where b(hj) =∑
c′∈N (hj)

m̃θc′→hj (hj). In tree-structured graphs, be-
liefs defined in this way give (up to a constant) max-
marginals: Φj;a = maxh|hj=a L(h). In loopy graphs,
beliefs produce pseudo max-marginals, which do not
account for the loopy graph structure but can be de-
coded to give approximate solutions, which have been
shown to be useful in practice.

2.2 BINARY REPRESENTATION

Note that we have restricted our attention to binary
variable problems. To represent multinomial variables,
we apply a simple transformation, converting variables
with L states to binary variables with a 1-of-L con-
straint ensuring that exactly one variable in the set is
on.

If we have a special purpose procedure for computing
max-marginals over multinomial variables, as in Duchi
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et al. (2007), we can convert to a binary representa-
tion at the max-marginal level as well. Starting with
max-marginals for a multinomial variable, c, which can
take on one of L values, j ∈ {1, . . . , L}, define binary
variables hj = 1 ⇐⇒ c = j. A max-marginal for
variable hj = 1 is exactly the max-marginal for c = j.
For hj = 0, we can take the maximum max-marginal
for c = j′ | j′ 6= j.

Since all variables are binary, we normalize messages
so that the entry for hj = 0 is always 0. To enforce this
constraint, we subtract m̃θc→hj (0) from both coordi-
nates, giving us

〈
0, m̃θc→hj (1)− m̃θc→hj (0)

〉
. We can

then drop the argument for mθc→hj (1) and use mθc→hj
to represent the scalar message difference. Similarly,
we assume θj(0) = 0 for all node potentials by setting
θj = θj(1) = θ̃j(1)− θ̃j(0).

We are then working with message differences, where
a positive value indicates a variable’s preference to
be on, and a negative value indicates a variable’s
preference to be off. To recover a vector of properly
scaled messages from message differences, we need
the value of the optimal assignment relative to the
potential of interest and the incoming messages,
Mθc
j = maxhc

[
θc(hc) +

∑
j′∈c|j′ 6=j hj ·mhj′→θc

]
.

Define Mθc to be the maximum value when
no j is left out of the sum. The correctly
scaled message vector for hj is then Mθc

j =〈
Mθc −max(0,mθc→hj ),M

θc + min(0,mθc→hj )
〉
.

Properly scaled max-marginals for the star sur-
rounding a factor can then be seen as beliefs:
Φθcj = Mθc

j + 〈0, θj〉. We work in the scalar message
difference representation, but this shows that we can
convert to and from a vector representation if needed.

3 TRACTABLE HOPS

We now turn our attention to classes of HOP where
max-marginals can be computed efficiently. The mes-
sage computations require careful caching and book-
keeping; however, the efficient implementations as well
as detailed derivations of the updates will be made
publicly available.1

3.1 CARDINALITY POTENTIALS

A broad class of existing tractable HOPs specify
function values based on the number of variables in
the subset that are on:

θcard(h1, . . . , hN ) = f(
∑
j

hj)

1http://www.cs.toronto.edu/∼dtarlow/hops/

Gupta et al. (2007) shows that the optimal single as-
signment can be computed for a star-structured model
(i.e., containing a single HOP and arbitrary unary
potentials) over cardinality in O(N logN) time by
a simple sorting then greedy procedure. We could
compute max-marginals for the star graph naively in
O(N2 logN) time by running this procedure itera-
tively fixing at each iteration one value of one variable.

If we use MPBP, Potetz (2007) shows that a sin-
gle message can be approximately computed in O(N)
time, so approximate max-marginals could be com-
puted in O(N2) time. If we compute all outgoing mes-
sages at the same time, Tarlow et al. (2008) shows that
all N outgoing messages can be computed exactly in
O(N2) time.

Here, we provide a procedure for exactly computing
all outgoing messages in O(N logN) – the same time
it would take to compute the optimal assignment us-
ing the Gupta et al. (2007) procedure. We note that
by using a dynamic heap and reusing previous sorts,
the complexity may in reality be closer to O(N) total
(O(1) amortized per message). Also note that this is
in comparison to the O(N · 2N−1) time that it would
take to compute these messages if the potential was
represented in standard tabular form.

First, as usual, sort all incoming messages in descend-
ing order, yielding mhj∗

b
→θ, where j∗b is the index

of the incoming message with bth largest value (and
conversely define r(b) = j as the reverse index). Next,
for b ∈ {0, . . . , N}, in a linear pass, compute the cu-
mulative sums c−1(b) =

∑b
b′=1

[
mhj∗

b′
→θ + f(b′ − 1)

]
;

c0(b) =
∑b
b′=0

[
mhj∗

b′
→θ + f(b′)

]
; and c1(b) =∑b−1

b′=0

[
mhj∗

b′
→θ + f(b′ + 1)

]
In another lin-

ear pass, compute the cumulative maxes of
the cumulative sums from the left, right, or
both: sL1 (b) = maxb′∈{0,...,b} c1(b′); sR−1(b) =
maxb′∈{b,...,N} c−1(b′); sL0 (b) = maxb′∈{0,...,b} c0(b′);
and sR0 (b) = maxb′∈{b,...,N} c0(b′).

The outgoing messages are then mθ→hj = m̃θ→hj (1)−
m̃θ→hj (0) where

m̃θ→hj (0) = max
(
sL0 (r(j)− 1), sL−1(r(j) + 1)−mhj→θ

)
m̃θ→hj (1) = max

(
sR1 (r(j)− 1), sR0 (r(j) + 1)−mhj→θ

)
Intuitively, this is simply a dynamic programming pro-
cedure for computing maximizations over cumulative
sums, which can be done in a few linear passes. Mes-
sages are then array lookups, so the complexity of com-
puting all N outgoing messages is dominated by the
initial sort operation, which will be O(N logN) in the
worst case.
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3.1.1 Special Cardinality Potentials

A simple special case of cardinality potentials is the
potential that takes on value 0 if a set of variables
are all on (i.e.,

∑
j hj = N) and a value of −α other-

wise. When α > 0, this encourages sets of variables
to match specific patterns, so it has been referred to
as a pattern potential (Kohli et al., 2007; Komodakis
& Paragios, 2009). By breaking the computation into
separate cases for

∑
j hj = N and

∑
j hj 6= N , it is

straightforward to show that the messages take the
form:
mθ→hj = max

(
α+

∑
j′:j′ 6=j min

(
0,mhj′→θon

)
, 0
)

Due to this more restricted structure, all outgoing
messages from a pattern potential can be computed
in O(N) (O(1) amortized) time by computing the
full sum,

∑
j′ min

(
0, mhj′→θon

)
then subtracting

min
(
0, mhj→θon

)
for each individual message.

Another special case of cardinality potentials is the po-
tential that constrains exactly b variables in a set to
be on. Givoni and Frey (2009) gives updates to com-
pute all messages from a single potential in O(N) time,
showing that additional structure allows us to compute
messages more efficiently than the general case.

3.2 ORDER POTENTIALS

We now introduce examples from a new class of
tractable HOP. These potentials depend on the order-
ing of variables within a factor, and they arise when
trying to represent spatial, temporal, or other ordering
considerations.

3.2.1 Convex Set Potentials

A convex set in one dimension is a contiguous subset.
We define a convex set potential, θcvx, to be a potential
that requires the variables with value 1 in an ordered
set to form a convex set. Before deriving message up-
dates, we must develop a notion of maximum weight
contiguous sequences and an algorithm for efficiently
finding them.

Suppose we have a vector of real-valued weights w =
〈w1, . . . , wN 〉. We define the maximum weight con-
tiguous sequence problem as maxh w · h such that
hj ∈ h with value 1 form a convex set. De-
fine MS(range, constraint) as the value of the max-
imum weight contiguous subsequence in the given
range obeying the constraint (or unconstrained if
constraint is left out). For notational simplicity, if
MS(range, hj = 1) < 0, let the value be 0 instead.
The scalar message mθcvx→hj is

MS(h1:j−1, hj−1 = 1) +MS(hj+1:N , hj+1 = 1)
−max (MS(h1:j−1),MS(hj+1:N ))

We can compute the constrained and unconstrained
maximum weight contiguous subsequences we need for
all outgoing messages in linear time using dynamic
programming. Given this, computing a message re-
quires only four array lookups, so the total time to
compute messages is O(N) (O(1) amortized).

3.2.2 Before-After Potentials

We define a before-after potential over two ordered
subsets of variables that encourages one to come before
the other:

θ→(hx,hy) =


−∞ if (

∑
i∈x hi) 6= 1 ∨ (

∑
j∈y hj) 6= 1

0 if i > j|i ∈ x, j ∈ y, hi = hj = 1
−α otherwise

The key to computing messages for this factor is to
condition on the hard constraint being satisfied then
into cases i > j and i < j. We compute maximums
independently, then we take the maximum over cases
where α is subtracted from the case i < j.

As with the cardinality potentials, we take cumula-
tive maxes over the incoming x messages and incoming
y messages from both the left and the right, respec-
tively: sLx (k), sRx (k), sLy (k), sRy (k) for k ∈ {1, . . . , N}.
Ignoring edge cases and only dealing with messages
to hi|i ∈ x for simplicity, the basic form of the mes-
sages are m̃θ→→hi(1) = max(sLy (i − 1) − α, sRy (i +
1)) and m̃θ→→hi(0) = Mθ→ for all cases except to
hi∗ , where Mθ→ = max

(
maxk

[
sLx (k) + sRy (k + 1)

]
,

maxk
[
sLy (k) + sRx (k + 1)− α

])
for k ∈ {1, . . . , N − 1}

and i∗ is the choice of i used in the optimal assign-
ment of i and j. For messages to hi∗ , we need the
maximum setting of i and j where i 6= i∗. This
can easily be computed in another linear pass. As
usual, mθ→→hi = m̃θ→→hi(1) − m̃θ→→hi(0). Updates
to hj ∈ y are almost identical but reversed.

This computation leverages the same caching ideas as
the general cardinality computations, which should be
broadly applicable across other classes of HOP as well.
Again, after the proper linear processing, the messages
we need to send are just array lookups, so the total
complexity is O(N) to compute all messages, or O(1)
per message amortized.

3.3 COMPOSITION OF POTENTIALS

In many cases, we may wish to switch between HOPs,
based on some simple logical rules. Typically, this
would require deriving new message updates, even for
small changes. To address this problem, we present the
class of composite potentials., which can be viewed as
an extension of context-specific independencies, where
rules specify tractable HOPs instead of constant values
(Boutilier et al., 1996).
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Suppose we have two disjoint subsets of hc, hs ∪hp =
hc and hs ∩ hp = ø. Define a composite potential

θφ(hc) = θg(hs)(hp)

where g : {0, 1}|hs| → {0, . . . ,K − 1} assigns each set-
ting of hs to one of K partitions, and there is a differ-
ent active potential θg(hs) depending on the partition.

If we condition on g(hs) = k, the maximizations we
need decouple into maxhs|g(hs)=k

[∑
i′ mhi′→θφ(hi′)

]
+

maxhp\hj

[
θk(hp) +

∑
j′ 6=jmhj′→θφ(hj′)

]
. In most

practical cases, |hs| is small (and as it grows, the po-
tential becomes an intractable non-structured HOP),
so we do the first maximizations by enumerating all
possible values of hs, yielding Mθs(k)—the maximum
of the first term conditioned on g(hs) = k.

We use efficient message computations to compute
properly scaled max-marginals for the subset of vari-
ables in hp relative to θk—this is just computing max-
marginals for the star graph around θk, ignoring hs.
We know how to do this efficiently because θk is as-
sumed to be a tractable HOP. We define these values
to be Mθk

j;hj
(k) for potential k and hj fixed to take on

value of 0 or 1. Finally, compute

m̃θφ→hj (0) = max
k

[
Mθs(k) +Mθk

j;0(k)
]

m̃θφ→hj (1) = max
k

[
Mθs(k) +Mθk

j;1(k)
]

by evaluating all combinations of k ∈ {0, . . . ,K − 1}
and hj ∈ {0, 1}, which requires computing all outgoing
messages from K tractable HOPs, yielding an amor-
tized message cost of O(2|hs|+K) or O(2|hs|+K logN)
depending on the type of HOP. Note that the optimal
value of k may be different for each maximization. The
messages to variables in hs are similar, but we omit
them due to space.

The binary formulation of affinity propagation (Givoni
& Frey, 2009), for example, can be thought of as using
a composite potential for columns, where hs = {hjj},
hp = {hj−j}, g(0) = 0, g(1) = 1, θ0 is an all-off po-
tential, and θ1 = 0.

A related composite factor is one where there is no
preference for the selector set hs to take any partic-
ular value (i.e., for all h ∈ hs, h is only in the scope
of the composite factor). In this case, the HOPs are
switched between based only on which is most likely,
and since messages to hs will only be useful to infer
which potential was chosen, we can choose not to com-
pute them if we are only interested in the assignment of
the hp variables. This is a max-composition potential,
and the truncated linear deviation pattern potentials
of Rother et al. (2009) can be seen as a special case of
this composition.

4 USING HOPS

Graph Constructions

There are many existing and novel models that can
be constructed by combining HOPs in different ways.
Here we give a few examples of the range of models
that can be constructed using the HOP vocabulary.

Specific cardinality potentials, such as pattern poten-
tials, are becoming popular in several computer vi-
sion applications. b-of-N potentials have many appli-
cations: in general b-matching problems; to represent
the set cover problem in conjunction with a composite
potential that enforces an all-on or all-off constraint;
and as hard degree constraints on nodes in a structure
learning framework.

Cardinality potentials are useful in many cases beyond
b-of-N potentials or pattern potentials, though. Hard
or soft parity potentials can be expressed by setting
f(k) = 0 when k is even, and f(k) = −α when k is
odd. They can further be used to express nonparamet-
ric priors over cluster sizes in an exemplar clustering
setting; they can encourage a specific percentage of
pixels to be on in an image segmentation setting; and
they can be used to represent a learned distribution of
sizes for empirical image segmentation priors.

Before-after potentials are useful for representing user
preferences of document i over document j in a rank-
ing setting; temporal ordering information in a time-
warped signal matching setting; soft word ordering
preferences in a language parsing setting; or the soft
temporal ordering of subactivities in an activity recog-
nition setting.

Convex set potentials are useful for representing con-
straints such as that parts be convex in an image seg-
mentation setting; words to be contiguous in a lan-
guage parsing setting; or objects appear in a contigu-
ous region of time in a recognition tracking setting.

Importantly, because the underlying mechanism is
message passing on standard factor graphs, any combi-
nation of these potentials can readily be combined and
seamlessly integrated with standard local potentials.

Outer Loop Algorithms

Our contribution in this work lies in the inner loop of
inference—in the subroutines used to calculate mes-
sages in the message passing framework.

We emphasize that several “outer loop” inference
routines can take advantage of these message-
computation subroutines. Most obviously, MPBP de-
fined on a cluster graph with single variable separa-
tor sets can use the presented message computations
without modification, though schedules that compute
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Figure 1: Image segmentation results for a 64 x 64
square using asynchronous max-product belief propa-
gation and combinations of high order cardinality and
convexity potentials. Rows from top to bottom: only
unary and pairwise; unary, pairwise, and convexity;
unary, pairwise, and cardinality; unary, pairwise, con-
vexity, and cardinality. Columns from left to right:
pairwise strength 0, .05, .1, .5.

all outgoing messages from a high order factor at once
will be most efficient. Globerson and Jaakkola (2008)
give a generalized edge variant of max-product lin-
ear programming (GEMPLP) that can use standard
HOP computations but requires that (easily calcu-
lated) backwards messages be added to the output.
Komodakis and Paragios (2009) mention a high or-
der variant of tree-reweighted max-product (TRW)
(Wainwright et al., 2005) that can use these computa-
tions to directly compute the needed star graph max-
marginals.

5 EXPERIMENTS

We have explored HOP constructions for several prob-
lems in combinatorial optimization, ranking, and vi-
sion. However, we leave a thorough exploration of
these applications and comparison of outer-loop MAP
algorithms to future work. Here, we focus on an image
segmentation and a ranking example, demonstrating
that high order models can be constructed easily and
used within a variety of outer loop algorithms.

Image Segmentation

We generated 64 x 64 pixel synthetic data for a
foreground-background image segmentation task that
simulates a fairly strong foreground response in a
square region of the image, then a semi-occluded re-

gion (horizontal bar) where there is little distinction
from the background. We added uniform pairwise po-
tentials to the 4-neighborhood of each pixel, and we
experimented with different combinations of HOPs:
no extra potentials; convex set potentials along hor-
izontal, vertical, 45◦, and 135◦ diagonals; cardinality
potentials f(k) = −| 64

2

4 − k|; and a combination of
both cardinality and convex set potentials.

We run asynchronous belief propagation, using a typ-
ical grid schedule, where we pass messages down then
up along columns, to neighboring columns, then mov-
ing across the image and repeating for the next col-
umn. We follow this with a similar scheme for rows.
After one round of these messages, we iterate through
all HOPs and update all messages going into the cur-
rent high order factor, then all messages outgoing from
the HOP. We use damping of .5, and run until mes-
sages converge.

Fig. 1 shows decoded beliefs for a variety of pairwise
potential strengths and HOP combinations. Note that
there is no setting of pairwise potentials that identifies
the region as one square (top row). However, when we
add the HOPs, it becomes easy to express priors that
encourage the single square interpretation. Addition-
ally, the algorithm is reasoning in a non-trivial way,
especially in the cardinality case as pairwise poten-
tials get stronger (third row). When pairwise poten-
tials are weak (left columns), the algorithm chooses the
pixels with highest singleton potential to turn on. As
the pairwise potentials get stronger (right columns), it
must balance singleton potentials with spatial conti-
guity.

Rank Aggregation

When ranking documents for information retrieval, it
is common to use a set of document- and query-specific
features to learn a score for each document-query com-
bination. When eliciting preferences from users, how-
ever, it is difficult for them to produce a real-valued
score for a query-document pair. Instead, users typi-
cally can express pairwise preferences (i.e., they prefer
document i to document j for some query).

We simulate this setting by building a query-specific
model where N documents can take on one of N ranks,
represented as an N x N binary grid of variables hij .
Each document has a score, si ∼ Uniform(0, 1), and we
use unary potentials of the form θij(hij) = (N−j)·si to
express that we prefer documents with higher scores
to be ranked higher (closer to 1). We simulate user
preferences by adding before-after potentials of ran-
dom strength over 10% of randomly chosen pairs of
rows. We also scale the overall strength of all before-
after potentials by multiplying by a common factor, λ,
giving us θ→(hi:,hk:;λ). This objective incorporates
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Figure 2: (a - c) Primal and dual objective for ranking
using high order TRW. λ gives the strength of before-
after potentials representing binary user preferences
of one document over another. (d - f) Final assign-
ments found when λ is varied, all of which are glob-
ally optimal. Documents are rows, ranks are columns.
Document-specific scores encourage document i to be
ranked in position i. ρ gives the fraction of soft pair-
wise order constraints that are satisfied.

both document-specific scores and elicited user prefer-
ences. Note that if all document scores are zero, this
can represent the NP-hard Kemeny rank aggregation
problem (Bartholdi et al., 1989).

In addition, we add the full bipartite matching po-
tential described in Duchi et al. (2007), enforcing the
constraint that each document can only take on one
rank, and each rank can only be occupied by one docu-
ment. We do inference with the simple high-order gen-
eralization of TRW given in Komodakis and Paragios
(2009). To decode assignments, we employ a greedy
strategy that is guaranteed to enforce the uniqueness
constraints: find the largest belief, bij , set the corre-
sponding hij = 1, then set beliefs in row i and column
j to −∞ and repeat until we have a full assignment.
For comparison, we also compute the objective of an
algorithm that ranks based solely on score. The dual
objective always met the primal decoded objective, so
we stopped inference when we were guaranteed to have
found the global optimum. Fig. 2 shows results for sev-
eral λ.

6 RELATED WORK

High Order Message Passing

In this work, we put into a single framework and ex-
panded upon several recent works. See Fig. 3 for an

overview. Givoni and Frey (2009) use efficient up-
dates for various b-of-N potentials in a MPBP setting;
Huang and Jebara (2007) develop an efficient MPBP
algorithm for weighted bipartite b-matching and prove
that the algorithm finds the optimal assignment; Duchi
et al. (2007) shows how combinatorial algorithms can
efficiently compute messages in models that have a full
bipartite matching or associative MRF as a subprob-
lem; and Komodakis and Paragios (2009) shows how to
compute max-marginals for pattern potentials. Potetz
(2007) and Tarlow et al. (2008) show how to compute
messages for the general cardinality case and Werner
(2008) briefly sketches a simple algorithm for doing so,
but none gives the more efficient algorithm we have
presented here.

Other Decompositions

Dual decomposition (DD) (Bertsekas, 1999) is a frame-
work for combining optimal subproblem solutions
rather than max-marginals. Our potentials could eas-
ily be used as subproblems in this framework, but
it would be simpler to directly compute subproblem
assignments rather than doing so via max-marginals.
DD has become popular very recently as an alterna-
tive to belief propagation, but few direct comparisons
have been done on equivalent problem decompositions.
Our formulation provides a means to perform a com-
parison of DD and message passing approaches, be-
cause it allows message passing algorithms to be de-
fined on equivalent problem decompositions for many
of the problems that DD has been applied to.

Finally, certain restricted types of HOP have also been
used in a graph cuts framework (Kohli et al., 2007,
2009; Delong & Boykov, 2009). When a problem can
be formulated to be submodular, these approaches will
always find the global optimum. As models become
more complex, however, it takes more effort to manip-
ulate the model into a compliant form—often involving
transformations, creation of auxiliary variables, and
sometimes non-intuitive restrictions on the problem
formulation. Our work, in contrast, applies uniformly
to a broader range of problems, and it is intuitive to
construct a model using the message passing formula-
tion. However, we see discovering further connections
and developing hybrid algorithms that work with ideas
from both approaches as an open direction of work.

7 CONCLUSION

In many low order models where we can compute
global optimums, the assignments still do not match
ground truth. This indicates we need richer, possibly
higher order representations. A challenge in working
with HOPs is that it is often difficult to recognize when
a problem formulation will be tractable. Our vocabu-
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Figure 3: Combinations of potentials and inference
algorithms in the literature. OPT only means the
method does not use max-marginals. * Can express
using presented HOPs and to our knowledge is novel.
** We improve upon the efficiency of these calcula-
tions. [C] (Cheng et al., 2006), [G] (Givoni & Frey,
2009), [Gup] (Gupta et al., 2007), [H] (Huang & Je-
bara, 2007), [Kom] (Komodakis & Paragios, 2009), [T]
(Tarlow et al., 2008), [Tor] (Torresani et al., 2008), [W]
(Werner, 2008), [Vic] (Vicente et al., 2009).

lary of common HOPs should make it easier to identify
problem structures and formulate appropriate poten-
tials that can be incorporated into efficient message
passing MAP inference algorithms.

We emphasize that the HOPs and composition rules
that we have presented are not exhaustive. There are
likely to be many other classes of tractable HOP and
compositions. In these cases, the strategies presented
here can likely be applied to build new classes of HOPs.

A limitation of our work as presented here is that fac-
tors only communicate with the rest of the network via
single variable interfaces. To get communication, for
example, between planar faces in a generalized MPBP
setting, and to get tighter LP relaxations, we would
like our factors to communicate via separator sets of
several variables. In theory, there is nothing prevent-
ing us from deriving such algorithms; this is an inter-
esting direction of future work.
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