Minimizing Sparse High-Order Energies by Submodular Vertex-Cover

Andrew Delong Olga Veksler Anton Osokin Yuri Boykov

Goal: Minimize binary energies with unary potentials and very sparse high-order “pattern potentials.”

\[
F(x) = \sum_{i=1}^{9} a_i x_i - b_1 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 - b_2 x_2 x_3 x_4 x_5 x_6 x_7 x_8 + b_3 x_3 x_4 x_5 x_6 x_7 x_8 \]

1. **Submodular Vertex-Cover:** Generalizes vertex-cover to allow submodular costs [Iwata & Nagano, 2009].

\[
\begin{align*}
\text{minimize } f(u) \\
\text{subject to } u_i + u_j &\geq 1 & \forall (i,j) \in E \\
u_j &\in \{0,1\}.
\end{align*}
\]

Typical Approach: Convert to pairwise problem with auxiliary variables [e.g. Rother et al., 2009].

Our Approach: Transform to small SVC instance

1. **Transform to SVC**
2. **Inference (BP, QPBO-I, ...)**
3. **Inference (BP, QPBO-I, ...)**
4. **Decode covering**

Synthetic Tests: 100x100 grid, random unary potentials
50 random pattern potentials of strength \(\lambda\).

Application: Fast fusion operation for hierarchical model-fitting / clustering, e.g. scene parsing [Tretyak et al., 2011].

Solution quality: Range [best lower bound, ICM energy] normalised to [0,1] for each \(\lambda\).