Admins

• Assignment 1 will be posted on the course webpage tomorrow.

• If you haven’t done so already, please email Rich so that we have you all on the mailing list. (csc2515prof@cs).

• New lecture room - GB 220.
Probability Basics for Machine Learning

CSC2515

Inmar Givoni
Wednesday, September 29, 2010

*Many slides based on Danny Tarlow’s slides, Sam Roweis ‘s review of probability, Bishop’s book, and some images from Wikipedia
Outline

• Motivation
• Notation, definitions, laws
• Exponential family distributions
 – Normal distribution
• Parameter estimation
• Conjugate priors
Why Represent Uncertainty?

• The world is full of uncertainty
 – “What will the weather be like today?”
 – “Will I like this movie?”
 – “Is there a person in this image?”

• We’re trying to build systems that understand and (possibly) interact with the real world

• We often can’t prove something is true, but we can still ask how likely different outcomes are or ask for the most likely explanation
Why Use Probability to Represent Uncertainty?

• Write down simple, reasonable criteria that you'd want from a system of uncertainty (common sense stuff), and you always get probability.

• Cox Axioms (Cox 1946); See Bishop, Section 1.2.3

• We will restrict ourselves to a relatively informal discussion of probability theory.
Notation

• A random variable X represents outcomes or states of the world.

• We will write $p(x)$ to mean $\text{Probability}(X = x)$

• Sample space: the space of all possible outcomes (may be discrete, continuous, or mixed)

• $p(x)$ is the probability mass (density) function
 – Assigns a number to each point in sample space
 – Non-negative, sums (integrates) to 1
 – Intuitively: how often does x occur, how much do we believe in x.
Joint Probability Distribution

• Prob(X=x, Y=y)
 – “Probability of X=x and Y=y”
 – p(x, y)

Conditional Probability Distribution

• Prob(X=x | Y=y)
 – “Probability of X=x given Y=y”
 – p(x | y) = p(x, y)/p(y)
The Rules of Probability

• Sum Rule (marginalization/summing out):

\[p(x) = \sum_y p(x, y) \]

\[p(x_1) = \sum_{x_2} \sum_{x_3} \ldots \sum_{x_N} p(x_1, x_2, \ldots, x_N) \]

• Product/Chain Rule:

\[p(x, y) = p(y \mid x) p(x) \]

\[p(x_1, \ldots, x_N) = p(x_1) p(x_2 \mid x_1) \ldots p(x_N \mid x_1, \ldots, x_{N-1}) \]
Bayes’ Rule

• One of the most important formulas in probability theory

\[p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} = \frac{p(y \mid x)p(x)}{\sum_{x'} p(y \mid x')p(x')} \]

• This gives us a way of “reversing” conditional probabilities
Independence

- Two random variables are said to be **independent** iff their joint distribution factors
 \[p(x, y) = p(y | x) p(x) = p(x | y) p(y) = p(x) p(y) \]

- Two random variables are **conditionally independent** given a third if they are independent after conditioning on the third
 \[p(x, y | z) = p(y | x, z) p(x | z) = p(y | z) p(x | z) \quad \forall z \]
Continuous Random Variables

• Outcomes are real values. Probability density functions define distribution.
 – E.g.,

 \[
 P(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi \sigma}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\}
 \]

• Continuous joint distributions: replace sums with integrals, and everything holds
 – E.g., Marginalization and conditional probability

 \[
 P(x, z) = \int P(x, y, z) = \int P(x, z \mid y)P(y)
 \]
Summarizing Probability Distributions

- It is often useful to give summaries of distributions without defining the whole distribution (E.g., mean and variance)

- Mean: \(E[x] = \langle x \rangle = \int x \cdot p(x) \, dx \)

- Variance: \(\text{var}(x) = \int (x - E[x])^2 \cdot p(x) \, dx \)

\[= E[x^2] - E[x]^2 \]
Exponential Family

• Family of probability distributions
• Many of the standard distributions belong to this family
 – Bernoulli, binomial/multinomial, Poisson, Normal (Gaussian), beta/Dirichlet,…
• Share many important properties
 – *e.g.* They have a conjugate prior (we’ll get to that later. Important for Bayesian statistics)
• First – let’s see some examples
Definition

- The exponential family of distributions over \(x \), given parameter \(\eta \) (eta) is the set of distributions of the form

\[
p(x \mid \eta) = h(x) g(\eta) \exp \{\eta^T u(x)\}
\]

- \(x \)-scalar/vector, discrete/continuous
- \(\eta \) – ‘natural parameters’
- \(u(x) \) – some function of \(x \) (sufficient statistic)
- \(g(\eta) \) - normalizer

\[
g(\eta) \int h(x) \exp \{\eta^T u(x)\} dx = 1
\]
Example 1: Bernoulli

- Binary random variable -
- \(p(\text{heads}) = \mu \)
- Coin toss

\[
p(x \mid \mu) = \mu^x (1 - \mu)^{1-x}
\]
Example 1: Bernoulli

\[p(x \mid \eta) = h(x) g(\eta) \exp \{ \eta^T u(x) \} \]

\[p(x \mid \mu) = \mu^x (1 - \mu)^{1-x} \]

\[= \exp \{ x \ln \mu + (1 - x) \ln(1 - \mu) \} \]

\[= (1 - \mu) \exp \{ \ln \left(\frac{\mu}{1-u} \right) x \} \]

\[p(x \mid \eta) = \sigma(-\eta) \exp(\eta x) \]

- \(h(x) = 1 \)
- \(u(x) = x \)
- \(\eta = \ln \left(\frac{\mu}{1-\mu} \right) \Rightarrow \mu = \sigma(\eta) = \frac{1}{1 + e^{-\eta}} \)
- \(g(\eta) = \sigma(-\eta) \)
Example 2: Multinomial

- $p(\text{value } k) = \mu_k$
 - $\mu_k \in [0,1], \sum_{k=1}^{M} \mu_k = 1$

- For a single observation – die toss
 - Sometimes called Categorical

- For multiple observations
 - integer counts on N trials
 - $\text{Prob}(1 \text{ came out } 3 \text{ times, } 2 \text{ came out once,..., } 6 \text{ came out } 7 \text{ times if I tossed a die } 20 \text{ times})$

$$P(x_1,\ldots,x_M \mid \mu) = \frac{N!}{\prod_k x_k!} \prod_{k=1}^{M} \mu_k^{x_k}$$
Example 2: Multinomial (1 observation)

\[p(x \mid \eta) = h(x) g(\eta) \exp \{ \eta^T u(x) \} \]

\[P(x_1, \ldots, x_M \mid \mu) = \prod_{k=1}^{M} \mu_k^{x_k} \]

\[= \exp \{ \sum_{k=1}^{M} x_k \ln \mu_k \} \]

\[p(x \mid \eta) = \exp (\eta^T x) \]

\[h(x) = 1 \]

\[u(x) = x \]

Parameters are not independent due to constraint of summing to 1, there’s a slightly more involved notation to address that, see Bishop 2.4
Example 3: Normal (Gaussian) Distribution

- Gaussian (Normal)

\[
p(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi \sigma}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\}
\]
Example 3: Normal (Gaussian) Distribution

\[p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\} \]

- \(\mu \) is the mean
- \(\sigma^2 \) is the variance
- Can verify these by computing integrals. E.g.,

\[
\int_{x \to -\infty}^{x \to \infty} x \cdot \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\} \, dx = \mu
\]
Example 3: Normal (Gaussian) Distribution

- Multivariate Gaussian

\[
P(x \mid \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right\}
\]
Example 3: Normal (Gaussian) Distribution

- Multivariate Gaussian
 \[
 p(x \mid \mu, \Sigma) = |2\pi \Sigma|^{-1/2} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
 \]

- \(x\) is now a vector
- \(\mu\) is the mean vector
- \(\Sigma\) is the covariance matrix
Important Properties of Gaussians

• All marginals of a Gaussian are again Gaussian
• Any conditional of a Gaussian is Gaussian
• The product of two Gaussians is again Gaussian
• Even the sum of two independent Gaussian RVs is a Gaussian.
Exponential Family Representation

\[p(x \mid \eta) = h(x) g(\eta) \exp \{ \eta^T u(x) \} \]

\[p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} \]

\[= \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{1}{2\sigma^2} x^2 + \frac{\mu}{\sigma^2} x + -\frac{1}{2\sigma^2} \mu^2 \right\} = \]

\[= (2\pi)^{-\frac{1}{2}} (-2\eta_2)^{\frac{1}{2}} \exp \left(\frac{\eta_1^2}{4\eta_2} \right) \exp \left\{ \begin{bmatrix} \frac{\mu}{\sigma^2} & -\frac{1}{2\sigma^2} \\ \eta^T & u(x) \end{bmatrix} \right\} \]
Example: Maximum Likelihood For a 1D Gaussian

• Suppose we are given a data set of samples of a Gaussian random variable X, $D=\{x^1, \ldots, x^N\}$ and told that the variance of the data is σ^2

\[x^1 \quad x^2 \quad \ldots \quad x^N \]

What is our best guess of μ?

*Need to assume data is independent and identically distributed (i.i.d.)
Example: Maximum Likelihood For a 1D Gaussian

What is our best guess of μ?

- We can write down the likelihood function:

$$p(d \mid \mu) = \prod_{i=1}^{N} p(x^i \mid \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{1}{2\sigma^2} (x^i - \mu)^2 \right\}$$

- We want to choose the μ that maximizes this expression

 - Take log, then basic calculus: differentiate w.r.t. μ, set derivative to 0, solve for μ to get sample mean

$$\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
Example: Maximum Likelihood For a 1D Gaussian

Maximum Likelihood
ML estimation of model parameters for Exponential Family

\[p(D \mid \eta) = p(x_1, \ldots, x_N) = \left(\prod h(x_n) \right) g(\eta)^N \exp \{ \eta^T \sum u(x_n) \} \]

\[\frac{\partial p(D \mid \eta)}{\partial \eta} = \ldots, \text{set to 0, solve for } \nabla g(\eta) \]

\[-\nabla \ln g(\eta_{ML}) = \frac{1}{N} \sum_{n=1}^{N} u(x_n) \]

- Can in principle be solved to get estimate for eta.
- The solution for the ML estimator depends on the data only through sum over \(u \), which is therefore called \textbf{sufficient statistic}.
- What we need to store in order to estimate parameters.
Bayesian Probabilities

\[p(\theta \mid d) = \frac{p(d \mid \theta) p(\theta)}{p(d)} \]

- \(p(d \mid \theta) \) is the **likelihood function**
- \(p(\theta) \) is the **prior probability** of (or our **prior belief** over) \(\theta \)
 - our beliefs over what models are likely or not **before seeing any data**
- \(p(d) = \int p(d \mid \theta) P(\theta) d\theta \) is the **normalization constant** or **partition function**
- \(p(\theta \mid d) \) is the **posterior distribution**
 - Readjustment of our prior beliefs in the face of data
Example: Bayesian Inference For a 1D Gaussian

• Suppose we have a prior belief that the mean of some random variable X is μ_0 and the variance of our belief is σ_0^2

• We are then given a data set of samples of X, $d=\{x^1, \ldots, x^N\}$ and somehow know that the variance of the data is σ^2

What is the posterior distribution over (our belief about the value of) μ?
Example: Bayesian Inference For a 1D Gaussian

\[x^1 \quad x^2 \quad \ldots \quad x^N \]
Example: Bayesian Inference For a 1D Gaussian
Example: Bayesian Inference For a 1D Gaussian

- Remember from earlier
\[p(\mu | d) = \frac{p(d | \mu) p(\mu)}{p(d)} \]

- \(p(d | \mu) \) is the **likelihood function**
\[
p(d | \mu) = \prod_{i=1}^{N} P(x^i | \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{1}{2\sigma^2} (x^i - \mu)^2 \right\}
\]

- \(p(\mu) \) is the **prior probability** of (or our prior belief over) \(\mu \)
\[
p(\mu | \mu_0, \sigma_0) = \frac{1}{\sqrt{2\pi\sigma_0}} \exp \left\{ -\frac{1}{2\sigma_0^2} (\mu - \mu_0)^2 \right\}
\]
Example: Bayesian Inference For a 1D Gaussian

\[p(\mu \mid D) \propto p(D \mid \mu) p(\mu) \]

\[p(\mu \mid D) = \text{Normal}(\mu \mid \mu_N, \sigma_N) \]

where

\[\mu_N = \frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2} \]

\[\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \mu_{ML} \]
Example: Bayesian Inference For a 1D Gaussian

Prior belief
Example: Bayesian Inference For a 1D Gaussian
Example: Bayesian Inference For a 1D Gaussian

Prior belief

Maximum Likelihood

Posterior Distribution
Conjugate Priors

- Notice in the Gaussian parameter estimation example that the functional form of the posterior was that of the prior (Gaussian).
- Priors that lead to that form are called ‘conjugate priors’.
- For any member of the exponential family there exists a conjugate prior that can be written like

\[p(\eta | \chi, \nu) = f(\chi, \nu) g(\eta)^\nu \exp\{\nu \eta^T \chi\} \]

- Multiply by likelihood to obtain posterior (up to normalization) of the form

\[p(\eta | D, \chi, \nu) \propto g(\eta)^{\nu+N} \exp\{\eta^T (\sum_{n=1}^{N} u(x_n) + \nu \chi)\} \]

- Notice the addition to the sufficient statistic
- \(\nu\) is the effective number of pseudo-observations.
Conjugate Priors - Examples

• Beta for Bernoulli/binomial
• Dirichlet for categorical/multinomial
• Normal for mean of Normal
• And many more...