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1 IntrodutionImagine what happens to the point in the N -dimensional spae orresponding to anN -pixel image of an objet, while the objet is deformed by shearing. A very smallamount of shearing will move the point only slightly, so deforming the objet byshearing will trae a ontinuous urve in the spae of pixel intensities. As illustratedin Fig. 1a, extensive levels of shearing will produe a highly nonlinear urve (onsidershearing a thin vertial line), although the urve an be approximated by a straightline loally.Linear approximations of the transformation manifold have been used to signif-iantly improve the performane of feedforward disriminative lassi�ers suh asnearest neighbors (Simard et al., 1993) and multilayer pereptrons (Simard et al.,1992). Linear generative models (fator analysis, mixtures of fator analysis) havealso been modi�ed using linear approximations of the transformation manifold tobuild in some degree of transformation invariane (Hinton et al., 1997).In general, the linear approximation is aurate for transformations that oupleneighboring pixels, but is inaurate for transformations that ouple nonneighboringpixels. In some appliations (e.g., handwritten digit reognition), the input an beblurred so that the linear approximation beomes more robust.For signi�ant levels of transformation, the nonlinear manifold an be better mod-
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(e) ̀ yzxFigure 1: (a) An N -pixel greysale image is represented by a point (un�lled dis) in an N -dimensional spae. When the objet being imaged is deformed by shearing, the point movesalong a ontinuous urve. Loally, the urve is linear, but high levels of shearing produe ahighly nonlinear urve, whih we approximate by disrete points (�lled diss) indexed by `. (b)A graphial model showing how a disrete transformation variable ` an be added to a densitymodel p(z) for a latent image z to model the observed image x. The Gaussian pdf p(xj`; z)aptures the `th transformation plus a small amount of pixel noise. (We use a box to representvariables that have Gaussian onditional pdfs.) We have explored () transformed mixturesof Gaussians, where  is a disrete luster index; (d) transformed omponent analysis (TCA),where y is a vetor of Gaussian fators, some of whih may model loally linear transformationperturbations; and (e) mixtures of transformed omponent analyzers, or transformed mixturesof fator analyzers.eled using a disrete approximation. For example, the urve in Fig. 1a an berepresented by a set of points (�lled diss). In this approah, a disrete set of possi-ble transformations is spei�ed beforehand and parameters are learned so that themodel is invariant to the set of transformations. This approah has been used todesign \onvolutional neural networks" that are invariant to translation (Le Cunet al., 1998) and to develop a general purpose learning algorithm for generativetopographi maps (Bishop et al., 1998).We desribe how invariane to a disrete set of known transformations (like transla-tion) an be built into a generative density model and we show how an EM algorithmfor the original density model an be extended to the new model by omputing ex-petations over the set of transformations. We give results for 5 di�erent types ofexperiment involving translation and shearing.2 Transformation as a Disrete Latent VariableWe represent the `th transformation by a sparse transformation matrix �` that op-erates on a vetor of image pixel intensities. For example, integer-pixel translationsof an image an be represented by permutation matries. Although other types oftransformation matrix may not be aurately represented by permutation matries,many useful types of transformation an be represented by sparse transformationmatries. For example, rotation and blurring an be represented by matries thathave a small number of nonzero elements per row (e.g., at most 6 for rotations).The observed image x is linked to the nontransformed latent image z and thetransformation index ` 2 f1; : : : ; Lg as follows:p(xj`; z) = N (x;�`z;	); (1)where 	 is a diagonal matrix of pixel noise varianes. Sine the probability ofa transformation may depend on the latent image, the joint distribution over thelatent image z, the transformation index ` and the observed image x isp(x; `; z) = N (x;�`z;	)P (`jz)p(z): (2)The orresponding graphial model is shown in Fig. 1b. For example, to model noisytransformed images of just one shape, we hoose p(z) to be a Gaussian distribution.



2.1 Transformed mixtures of Gaussians (TMG). Fig. 1 shows the graph-ial model for a TMG, where di�erent lusters may have di�erent transformationprobabilities. Cluster  has mixing proportion �, mean � and diagonal ovarianematrix �. The joint distribution isp(x; `; z; ) = N (x;�`z;	)N (z;�;�)�`�; (3)where the probability of transformation ` for luster  is �`. Marginalizing overthe latent image gives the luster/transformation onditional likelihood,p(xj`; ) = N (x;�`�;�`��T̀ +	); (4)whih an be used to ompute p(x) and the luster/transformation responsibilityP (`; jx). This likelihood looks like the likelihood for a mixtures of fator analyzers(Ghahramani and Hinton, 1997). However, whereas the likelihood omputation forN latent pixels takes order N3 time in a mixture of fator analyzers, it takes lineartime, order N , in a TMG, beause �`��T̀ +	 is sparse.2.2 Transformed omponent analysis (TCA). Fig. 1d shows the graphialmodel for TCA (or \transformed fator analysis"). The latent image is modeledusing linearly ombined Gaussian fators, y. The joint distribution isp(x; `; z;y) = N (x;�`z;	)N (z;� +�y;�)N (y;0; I)�`; (5)where � is the mean of the latent image, � is a matrix of latent image omponents(the fator loading matrix) and� is a diagonal noise ovariane matrix for the latentimage. Marginalizing over the fators and the latent image gives the transformationonditional likelihood,p(xj`) = N (x;�`�;�`(��T +�)�T̀ +	); (6)whih an be used to ompute p(x) and the transformation responsibility p(`jx).�`(��T + �)�T̀ is not sparse, so omputing this likelihood exatly takes N3time. However, the likelihood an be omputed in linear time if we assumej�`(��T +�)�T̀ +	j � j�`(��T +�)�T̀j, whih orresponds to assuming thatthe observed noise is smaller than the variation due to the latent image, or that theobserved noise is aounted for by the latent noise model, �. In our experiments,this approximation did not lead to degenerate behavior and produed useful models.By setting olumns of � equal to the derivatives of � with respet to ontinuoustransformation parameters, a TCA an aommodate both a loal linear approxi-mation and a disrete approximation to the transformation manifold.2.3 Mixtures of transformed omponent analyzers (MTCA). A ombi-nation of a TMG and a TCA an be used to jointly model lusters, linear ompo-nents and transformations. Alternatively, a mixture of Gaussians that is invariantto a disrete set of transformations and loally linear transformations an be ob-tained by ombining a TMG with a TCA whose omponents are all set equal totransformation derivatives.The joint distribution for the ombined model in Fig. 1e isp(x; `; z; ;y) = N (x;�`z;	)N (z;� +�y;�)N (y;0; I)�`�: (7)The luster/transformation likelihood is p(xj`; ) = N (x;�`�;�`(��T +�)�T̀+	), whih an be approximated in linear time as for TCA.



3 Mixed Transformed Component Analysis (MTCA)We present an EM algorithm for MTCA; EM algorithms for TMG or TCA emergeby setting the number of fators to 0 or setting the number of lusters to 1.Let � represent a parameter in the generative model. For i.i.d. data, the derivativeof the log-likelihood of a training set x1; : : : ;xT with respet to � an be written� log p(x1; : : : ;xT )�� = TXt=1 Eh ��� log p(xt; ; `; z;y)���xti; (8)where the expetation is taken over p(; `; z;yjxt). The EM algorithm iterativelysolves for a new set of parameters using the old parameters to ompute the expe-tations. This proedure onsistently inreases the likelihood of the training data.By setting (8) to 0 and solving for the new parameter values, we obtain update equa-tions based on the expetations given in the Appendix. Notation: h�i = 1T PTt=1(�)is a suÆient statisti omputed by averaging over the training set; diag(A) gives avetor ontaining the diagonal elements of matrixA; diag(a) gives a diagonal matrixwhose diagonal ontains the elements of vetor a; and a Æ b gives the element-wiseprodut of vetors a and b. Denoting the updated parameters by \~", we have~� = hP (jxt)i; ~�` = hP (`jxt; )i; (9)~� = hP (jxt)E[z��yjxt; ℄ihP (jxt)i ; (10)~�= diag�hP (jxt)E[(z����y)Æ(z����y)jxt; ℄i�hP (jxt)i ; (11)~	 = diag�hE[(xt��`z)Æ(xt��`z)jxt℄i�; (12)~� = hP (jxt)E[(z� �)y0jxt℄ihP (jxt)E[yy0jxt℄i�1: (13)To redue the number of parameters, we will sometimes assume �` does not dependon  or even that �` is held onstant at a uniform distribution.4 Experiments4.1 Filtering Images from a Sanning Eletron Mirosope (SEM).SEM images (e.g., Fig. 2a) an have a very low signal to noise ratio due to ahigh variane in eletron emission rate and modulation of this variane by the im-aged material (Golem and Cohen, 1998). To redue noise, multiple images areusually averaged and the pixel varianes an be used to estimate ertainty in ren-dered strutures. Fig. 2b shows the estimated means and varianes of the pixelsfrom 230 140� 56 SEM images like the ones in Fig. 2a. In fat, averaging imagesdoes not take into aount spatial unertainties and �ltering in the imaging proessintrodued by the eletron detetors and the high-speed eletrial iruits.We trained a single-luster TMG with 5 horizontal shifts and 5 vertial shifts onthe 230 SEM images using 30 iterations of EM. To keep the number of parametersalmost equal to the number of parameters estimated using simple averaging, thetransformation probabilities were not learned and the pixel varianes in the observedimage were set equal after eah M step. So, TMG had 1 more parameter. Fig. 2shows the mean and variane learned by the TMG. Compared to simple averaging,the TMG �nds sharper, more detailed struture. The varianes are signi�antlylower, indiating that the TMG produes a more on�dent estimate of the image.



(a) (b)()Figure 2: (a) 140 � 56 pixel SEM images. (b) The mean and variane of the image pixels.() The mean and variane found by a TMG reveal more struture and less unertainty.(a)
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(e)(f)(g)Figure 3: (a) Frontal fae images of two people. (b) Cluster means learned by a TMG and() a mixture of Gaussians. (d) Images of one person with di�erent poses. (e) Cluster meanslearned by a TMG. (f) Less detailed luster means learned by a mixture of Gaussians. (g) Meanand �rst 4 prinipal omponents of the data, whih mostly model lighting and translation.4.2 Clustering Faes and Poses. Fig. 3a shows examples from a trainingset of 400 jerky images of two people walking aross a luttered bakground. Wetrained a TMG with 4 lusters, 11 horizontal shifts and 11 vertial shifts using15 iterations of EM after initializing the weights to small, random values. Theloop-rih MATLAB sript exeuted in 40 minutes on a 500MHz Pentium proessor.Fig. 3b shows the luster means, whih inlude two sharp representations of eahperson's fae, with the bakground lutter suppressed. Fig. 3 shows the muhblurrier means for a mixture of Gaussians trained using 15 iterations of EM.Fig. 3d shows examples from a training set of 400 jerky images of one person withdi�erent poses. We trained a TMG with 5 lusters, 11 horizontal shifts and 11vertial shifts using 40 iterations of EM. Fig. 3e shows the luster means, whihapture 4 poses and mostly suppress the bakground lutter. The mean for luster4 inludes part of the bakground, but this luster also has a low mixing proportionof 0.1. A traditional mixture of Gaussians trained using 40 iterations of EM �ndsblurrier means, as shown in Fig. 3f. The �rst 4 prinipal omponents mostly try toaount for lighting and translation, as shown in Fig. 3g.
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Figure 4: Modeling handwritten digits. (a) Means and omponents and (b) the sheared +translated means (dimmed transformations have low probability) for eah of 10 TCA modelstrained on 200 examples of eah digit. () Means and omponents of 10 FA models trainedon the same data. (d) Digits generated from the 10 TCA models and (e) the 10 FA models.(f) The means for a mixture of 10 Gaussians, a mixture of 10 fator analyzers and a 10-lusterTMG trained on all 2000 digits. In eah ase, the best of 10 experiments was seleted.4.3 Modeling Handwritten Digits. We performed both supervised and un-supervised learning experiments on 8� 8 greysale versions of 2000 digits from theCEDAR CDROM (Hull, 1994). Although the preproessed images �t snugly in the8 � 8 window, there is wide variation in \writing angle" (e.g., the vertial strokeof the 7 is at di�erent angles). So, we produed a set of 29 shearing+translationtransformations (see the top row of Fig. 4b) to use in transformed density models.In our supervised learning experiments, we trained one 10-omponent TCA on eahlass of digit using 30 iterations of EM. Fig. 4a shows the mean and 10 omponentsfor eah of the 10 models. The lower 10 rows of images in Fig. 4b show the shearedand translated means. In ases where the transformation probability is below 1%,the image is dimmed. We also trained one 10-omponent fator analyzer on eahlass of digit using 30 iterations of EM. The means and omponents are shownin Fig. 4. The means found by TCA are sharper and whereas the omponentsfound by fator analysis often aount for writing angle (e.g., see the omponentsfor 7) the omponents found by TCA tend to aount for line thikness and arsize. Fig. 4d and e show digits that were randomly generated from the TCAs andthe fator analyzers. Sine di�erent omponents in the fator analyzers aountfor di�erent stroke angles, the simulated digits often have an extra stroke, whereasdigits simulated from the TCAs ontain fewer spurious strokes.To test reognition performane, we trained 10-omponent fator analyzers andTCAs on 200 examples of eah digit using 50 iterations of EM. Eah set of modelsused Bayes rule to lassify 1000 test patterns and while fator analysis gave an errorrate of 3.2%, TCA gave an error rate of only 2.7%.In our unsupervised learning experiments, we �t 10-luster mixture models to theentire set of 2000 digits to see whih models ould identify all 10 digits. We tried amixture of 10 Gaussians, a mixture of 10 fator analyzers and a 10-luster TMG. Ineah ase, 10 models were trained using 100 iterations of EM and the model with



the highest likelihood was seleted and is shown in Fig. 4f. Compared to the TMG,the �rst two methods found blurred and repeated lasses. After identifying eahluster with its most prevalent lass of digit, we found that the �rst two methodshad error rates of 53% and 49%, but the TMG had a muh lower error rate of 26%.5 SummaryIn many learning appliations, we know beforehand that the data inludes transfor-mations of an easily spei�ed nature (e.g., shearing of digit images). If a generativedensity model is learned from the data, the model must extrat a model of boththe transformations and the more interesting and potentially useful struture. Wedesribed a way to add transformation invariane to a generative density model byapproximating the transformation manifold with a disrete set of points. This re-leases the generative model from needing to model the transformations. 5 di�erenttypes of experiment show that the method is e�etive and quite eÆient.Although the time needed by this method sales exponentially with the dimensional-ity of the transformation manifold, we believe that it will be useful in many pratialappliations and that it illustrates what is possible with a generative model thatinorporates a latent transformation variable. We are exploring the performane ofa faster variational learning method and extending the model to time series.Aknowledgements. We used CITO, NSERC, NSF and Bekman Foundation grants.ReferenesC. M. Bishop, M. Svensen and C. K. I. Williams 1998. GTM: The generative topographi mapping.Neural Computation 10:1, 215{235.G. E. Hinton, P. Dayan and M. Revow 1997. Modeling the manifolds of images of handwritten digits.IEEE Trans. on Neural Networks 8, 65{74.Z. Ghahramani and G. E. Hinton 1997. The EM algorithm for mixtures of fator analyzers. Universityof Toronto Tehnial Report CRG-TR-96-1. Available at www.gatsby.ul.a.uk/�zoubin.R. Golem and I. Cohen 1998. Sanning eletron mirosope image enhanement. Shool of Computerand Eletrial Engineering projet report, Ben-Gurion University.J. J. Hull 1994. A database for handwritten text reognition researh. IEEE Trans. on Pattern Analysisand Mahine Intelligene 16:5, 550{554.Y. Le Cun, L. Bottou, Y. Bengio and P. Ha�ner 1998. Gradient-based learning applied to doumentreognition. Proeedings of the IEEE 86:11, November, 2278{2324.P. Y. Simard, B. Vitorri, Y. Le Cun and J. Denker 1992. Tangent Prop { A formalism for speifyingseleted invarianes in an adaptive network. In Advanes in Neural Information Proessing Systems4, Morgan Kaufmann, San Mateo, CA.P. Y. Simard, Y. Le Cun and J. Denker 1993. EÆient pattern reognition using a new transformationdistane. In S. J. Hanson, J. D. Cowan and C. L. Giles, Advanes in Neural Information ProessingSystems 5, Morgan Kaufmann, San Mateo, CA.Appendix: The SuÆient Statistis Found in the E-StepThe suÆient statistis for the M-Step are omputed in the E-Step using sparse linear algebra dur-ing a single pass through the training set. Before making this pass, the following matries are om-puted: 
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