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 transformations su
h as translation andshearing in an image has been su

essfully in
orporated into feed-forward me
hanisms, e.g., \
onvolutional neural networks", \tan-gent propagation". We des
ribe a way to add transformation invari-an
e to a generative density model by approximating the nonlineartransformation manifold by a dis
rete set of transformations. AnEM algorithm for the original model 
an be extended to the newmodel by 
omputing expe
tations over the set of transformations.We show how to add a dis
rete transformation variable to Gaussianmixture modeling, fa
tor analysis and mixtures of fa
tor analysis.We give results on �ltering mi
ros
opy images, fa
e and fa
ial pose
lustering, and handwritten digit modeling and re
ognition.
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1 Introdu
tionImagine what happens to the point in the N -dimensional spa
e 
orresponding to anN -pixel image of an obje
t, while the obje
t is deformed by shearing. A very smallamount of shearing will move the point only slightly, so deforming the obje
t byshearing will tra
e a 
ontinuous 
urve in the spa
e of pixel intensities. As illustratedin Fig. 1a, extensive levels of shearing will produ
e a highly nonlinear 
urve (
onsidershearing a thin verti
al line), although the 
urve 
an be approximated by a straightline lo
ally.Linear approximations of the transformation manifold have been used to signif-i
antly improve the performan
e of feedforward dis
riminative 
lassi�ers su
h asnearest neighbors (Simard et al., 1993) and multilayer per
eptrons (Simard et al.,1992). Linear generative models (fa
tor analysis, mixtures of fa
tor analysis) havealso been modi�ed using linear approximations of the transformation manifold tobuild in some degree of transformation invarian
e (Hinton et al., 1997).In general, the linear approximation is a

urate for transformations that 
oupleneighboring pixels, but is ina

urate for transformations that 
ouple nonneighboringpixels. In some appli
ations (e.g., handwritten digit re
ognition), the input 
an beblurred so that the linear approximation be
omes more robust.For signi�
ant levels of transformation, the nonlinear manifold 
an be better mod-
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̀ yzxFigure 1: (a) An N -pixel greys
ale image is represented by a point (un�lled dis
) in an N -dimensional spa
e. When the obje
t being imaged is deformed by shearing, the point movesalong a 
ontinuous 
urve. Lo
ally, the 
urve is linear, but high levels of shearing produ
e ahighly nonlinear 
urve, whi
h we approximate by dis
rete points (�lled dis
s) indexed by `. (b)A graphi
al model showing how a dis
rete transformation variable ` 
an be added to a densitymodel p(z) for a latent image z to model the observed image x. The Gaussian pdf p(xj`; z)
aptures the `th transformation plus a small amount of pixel noise. (We use a box to representvariables that have Gaussian 
onditional pdfs.) We have explored (
) transformed mixturesof Gaussians, where 
 is a dis
rete 
luster index; (d) transformed 
omponent analysis (TCA),where y is a ve
tor of Gaussian fa
tors, some of whi
h may model lo
ally linear transformationperturbations; and (e) mixtures of transformed 
omponent analyzers, or transformed mixturesof fa
tor analyzers.eled using a dis
rete approximation. For example, the 
urve in Fig. 1a 
an berepresented by a set of points (�lled dis
s). In this approa
h, a dis
rete set of possi-ble transformations is spe
i�ed beforehand and parameters are learned so that themodel is invariant to the set of transformations. This approa
h has been used todesign \
onvolutional neural networks" that are invariant to translation (Le Cunet al., 1998) and to develop a general purpose learning algorithm for generativetopographi
 maps (Bishop et al., 1998).We des
ribe how invarian
e to a dis
rete set of known transformations (like transla-tion) 
an be built into a generative density model and we show how an EM algorithmfor the original density model 
an be extended to the new model by 
omputing ex-pe
tations over the set of transformations. We give results for 5 di�erent types ofexperiment involving translation and shearing.2 Transformation as a Dis
rete Latent VariableWe represent the `th transformation by a sparse transformation matrix �` that op-erates on a ve
tor of image pixel intensities. For example, integer-pixel translationsof an image 
an be represented by permutation matri
es. Although other types oftransformation matrix may not be a

urately represented by permutation matri
es,many useful types of transformation 
an be represented by sparse transformationmatri
es. For example, rotation and blurring 
an be represented by matri
es thathave a small number of nonzero elements per row (e.g., at most 6 for rotations).The observed image x is linked to the nontransformed latent image z and thetransformation index ` 2 f1; : : : ; Lg as follows:p(xj`; z) = N (x;�`z;	); (1)where 	 is a diagonal matrix of pixel noise varian
es. Sin
e the probability ofa transformation may depend on the latent image, the joint distribution over thelatent image z, the transformation index ` and the observed image x isp(x; `; z) = N (x;�`z;	)P (`jz)p(z): (2)The 
orresponding graphi
al model is shown in Fig. 1b. For example, to model noisytransformed images of just one shape, we 
hoose p(z) to be a Gaussian distribution.



2.1 Transformed mixtures of Gaussians (TMG). Fig. 1
 shows the graph-i
al model for a TMG, where di�erent 
lusters may have di�erent transformationprobabilities. Cluster 
 has mixing proportion �
, mean �
 and diagonal 
ovarian
ematrix �
. The joint distribution isp(x; `; z; 
) = N (x;�`z;	)N (z;�
;�
)�`
�
; (3)where the probability of transformation ` for 
luster 
 is �`
. Marginalizing overthe latent image gives the 
luster/transformation 
onditional likelihood,p(xj`; 
) = N (x;�`�
;�`�
�T̀ +	); (4)whi
h 
an be used to 
ompute p(x) and the 
luster/transformation responsibilityP (`; 
jx). This likelihood looks like the likelihood for a mixtures of fa
tor analyzers(Ghahramani and Hinton, 1997). However, whereas the likelihood 
omputation forN latent pixels takes order N3 time in a mixture of fa
tor analyzers, it takes lineartime, order N , in a TMG, be
ause �`�
�T̀ +	 is sparse.2.2 Transformed 
omponent analysis (TCA). Fig. 1d shows the graphi
almodel for TCA (or \transformed fa
tor analysis"). The latent image is modeledusing linearly 
ombined Gaussian fa
tors, y. The joint distribution isp(x; `; z;y) = N (x;�`z;	)N (z;� +�y;�)N (y;0; I)�`; (5)where � is the mean of the latent image, � is a matrix of latent image 
omponents(the fa
tor loading matrix) and� is a diagonal noise 
ovarian
e matrix for the latentimage. Marginalizing over the fa
tors and the latent image gives the transformation
onditional likelihood,p(xj`) = N (x;�`�;�`(��T +�)�T̀ +	); (6)whi
h 
an be used to 
ompute p(x) and the transformation responsibility p(`jx).�`(��T + �)�T̀ is not sparse, so 
omputing this likelihood exa
tly takes N3time. However, the likelihood 
an be 
omputed in linear time if we assumej�`(��T +�)�T̀ +	j � j�`(��T +�)�T̀j, whi
h 
orresponds to assuming thatthe observed noise is smaller than the variation due to the latent image, or that theobserved noise is a

ounted for by the latent noise model, �. In our experiments,this approximation did not lead to degenerate behavior and produ
ed useful models.By setting 
olumns of � equal to the derivatives of � with respe
t to 
ontinuoustransformation parameters, a TCA 
an a

ommodate both a lo
al linear approxi-mation and a dis
rete approximation to the transformation manifold.2.3 Mixtures of transformed 
omponent analyzers (MTCA). A 
ombi-nation of a TMG and a TCA 
an be used to jointly model 
lusters, linear 
ompo-nents and transformations. Alternatively, a mixture of Gaussians that is invariantto a dis
rete set of transformations and lo
ally linear transformations 
an be ob-tained by 
ombining a TMG with a TCA whose 
omponents are all set equal totransformation derivatives.The joint distribution for the 
ombined model in Fig. 1e isp(x; `; z; 
;y) = N (x;�`z;	)N (z;�
 +�
y;�
)N (y;0; I)�`
�
: (7)The 
luster/transformation likelihood is p(xj`; 
) = N (x;�`�
;�`(�
�T
 +�
)�T̀+	), whi
h 
an be approximated in linear time as for TCA.



3 Mixed Transformed Component Analysis (MTCA)We present an EM algorithm for MTCA; EM algorithms for TMG or TCA emergeby setting the number of fa
tors to 0 or setting the number of 
lusters to 1.Let � represent a parameter in the generative model. For i.i.d. data, the derivativeof the log-likelihood of a training set x1; : : : ;xT with respe
t to � 
an be written� log p(x1; : : : ;xT )�� = TXt=1 Eh ��� log p(xt; 
; `; z;y)���xti; (8)where the expe
tation is taken over p(
; `; z;yjxt). The EM algorithm iterativelysolves for a new set of parameters using the old parameters to 
ompute the expe
-tations. This pro
edure 
onsistently in
reases the likelihood of the training data.By setting (8) to 0 and solving for the new parameter values, we obtain update equa-tions based on the expe
tations given in the Appendix. Notation: h�i = 1T PTt=1(�)is a suÆ
ient statisti
 
omputed by averaging over the training set; diag(A) gives ave
tor 
ontaining the diagonal elements of matrixA; diag(a) gives a diagonal matrixwhose diagonal 
ontains the elements of ve
tor a; and a Æ b gives the element-wiseprodu
t of ve
tors a and b. Denoting the updated parameters by \~", we have~�
 = hP (
jxt)i; ~�`
 = hP (`jxt; 
)i; (9)~�
 = hP (
jxt)E[z��
yjxt; 
℄ihP (
jxt)i ; (10)~�
= diag�hP (
jxt)E[(z��
��
y)Æ(z��
��
y)jxt; 
℄i�hP (
jxt)i ; (11)~	 = diag�hE[(xt��`z)Æ(xt��`z)jxt℄i�; (12)~�
 = hP (
jxt)E[(z� �
)y0jxt℄ihP (
jxt)E[yy0jxt℄i�1: (13)To redu
e the number of parameters, we will sometimes assume �`
 does not dependon 
 or even that �`
 is held 
onstant at a uniform distribution.4 Experiments4.1 Filtering Images from a S
anning Ele
tron Mi
ros
ope (SEM).SEM images (e.g., Fig. 2a) 
an have a very low signal to noise ratio due to ahigh varian
e in ele
tron emission rate and modulation of this varian
e by the im-aged material (Golem and Cohen, 1998). To redu
e noise, multiple images areusually averaged and the pixel varian
es 
an be used to estimate 
ertainty in ren-dered stru
tures. Fig. 2b shows the estimated means and varian
es of the pixelsfrom 230 140� 56 SEM images like the ones in Fig. 2a. In fa
t, averaging imagesdoes not take into a

ount spatial un
ertainties and �ltering in the imaging pro
essintrodu
ed by the ele
tron dete
tors and the high-speed ele
tri
al 
ir
uits.We trained a single-
luster TMG with 5 horizontal shifts and 5 verti
al shifts onthe 230 SEM images using 30 iterations of EM. To keep the number of parametersalmost equal to the number of parameters estimated using simple averaging, thetransformation probabilities were not learned and the pixel varian
es in the observedimage were set equal after ea
h M step. So, TMG had 1 more parameter. Fig. 2
shows the mean and varian
e learned by the TMG. Compared to simple averaging,the TMG �nds sharper, more detailed stru
ture. The varian
es are signi�
antlylower, indi
ating that the TMG produ
es a more 
on�dent estimate of the image.



(a) (b)(
)Figure 2: (a) 140 � 56 pixel SEM images. (b) The mean and varian
e of the image pixels.(
) The mean and varian
e found by a TMG reveal more stru
ture and less un
ertainty.(a)

(b)(
)

(d)
(e)(f)(g)Figure 3: (a) Frontal fa
e images of two people. (b) Cluster means learned by a TMG and(
) a mixture of Gaussians. (d) Images of one person with di�erent poses. (e) Cluster meanslearned by a TMG. (f) Less detailed 
luster means learned by a mixture of Gaussians. (g) Meanand �rst 4 prin
ipal 
omponents of the data, whi
h mostly model lighting and translation.4.2 Clustering Fa
es and Poses. Fig. 3a shows examples from a trainingset of 400 jerky images of two people walking a
ross a 
luttered ba
kground. Wetrained a TMG with 4 
lusters, 11 horizontal shifts and 11 verti
al shifts using15 iterations of EM after initializing the weights to small, random values. Theloop-ri
h MATLAB s
ript exe
uted in 40 minutes on a 500MHz Pentium pro
essor.Fig. 3b shows the 
luster means, whi
h in
lude two sharp representations of ea
hperson's fa
e, with the ba
kground 
lutter suppressed. Fig. 3
 shows the mu
hblurrier means for a mixture of Gaussians trained using 15 iterations of EM.Fig. 3d shows examples from a training set of 400 jerky images of one person withdi�erent poses. We trained a TMG with 5 
lusters, 11 horizontal shifts and 11verti
al shifts using 40 iterations of EM. Fig. 3e shows the 
luster means, whi
h
apture 4 poses and mostly suppress the ba
kground 
lutter. The mean for 
luster4 in
ludes part of the ba
kground, but this 
luster also has a low mixing proportionof 0.1. A traditional mixture of Gaussians trained using 40 iterations of EM �ndsblurrier means, as shown in Fig. 3f. The �rst 4 prin
ipal 
omponents mostly try toa

ount for lighting and translation, as shown in Fig. 3g.



(a) (b)
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Figure 4: Modeling handwritten digits. (a) Means and 
omponents and (b) the sheared +translated means (dimmed transformations have low probability) for ea
h of 10 TCA modelstrained on 200 examples of ea
h digit. (
) Means and 
omponents of 10 FA models trainedon the same data. (d) Digits generated from the 10 TCA models and (e) the 10 FA models.(f) The means for a mixture of 10 Gaussians, a mixture of 10 fa
tor analyzers and a 10-
lusterTMG trained on all 2000 digits. In ea
h 
ase, the best of 10 experiments was sele
ted.4.3 Modeling Handwritten Digits. We performed both supervised and un-supervised learning experiments on 8� 8 greys
ale versions of 2000 digits from theCEDAR CDROM (Hull, 1994). Although the prepro
essed images �t snugly in the8 � 8 window, there is wide variation in \writing angle" (e.g., the verti
al strokeof the 7 is at di�erent angles). So, we produ
ed a set of 29 shearing+translationtransformations (see the top row of Fig. 4b) to use in transformed density models.In our supervised learning experiments, we trained one 10-
omponent TCA on ea
h
lass of digit using 30 iterations of EM. Fig. 4a shows the mean and 10 
omponentsfor ea
h of the 10 models. The lower 10 rows of images in Fig. 4b show the shearedand translated means. In 
ases where the transformation probability is below 1%,the image is dimmed. We also trained one 10-
omponent fa
tor analyzer on ea
h
lass of digit using 30 iterations of EM. The means and 
omponents are shownin Fig. 4
. The means found by TCA are sharper and whereas the 
omponentsfound by fa
tor analysis often a

ount for writing angle (e.g., see the 
omponentsfor 7) the 
omponents found by TCA tend to a

ount for line thi
kness and ar
size. Fig. 4d and e show digits that were randomly generated from the TCAs andthe fa
tor analyzers. Sin
e di�erent 
omponents in the fa
tor analyzers a

ountfor di�erent stroke angles, the simulated digits often have an extra stroke, whereasdigits simulated from the TCAs 
ontain fewer spurious strokes.To test re
ognition performan
e, we trained 10-
omponent fa
tor analyzers andTCAs on 200 examples of ea
h digit using 50 iterations of EM. Ea
h set of modelsused Bayes rule to 
lassify 1000 test patterns and while fa
tor analysis gave an errorrate of 3.2%, TCA gave an error rate of only 2.7%.In our unsupervised learning experiments, we �t 10-
luster mixture models to theentire set of 2000 digits to see whi
h models 
ould identify all 10 digits. We tried amixture of 10 Gaussians, a mixture of 10 fa
tor analyzers and a 10-
luster TMG. Inea
h 
ase, 10 models were trained using 100 iterations of EM and the model with



the highest likelihood was sele
ted and is shown in Fig. 4f. Compared to the TMG,the �rst two methods found blurred and repeated 
lasses. After identifying ea
h
luster with its most prevalent 
lass of digit, we found that the �rst two methodshad error rates of 53% and 49%, but the TMG had a mu
h lower error rate of 26%.5 SummaryIn many learning appli
ations, we know beforehand that the data in
ludes transfor-mations of an easily spe
i�ed nature (e.g., shearing of digit images). If a generativedensity model is learned from the data, the model must extra
t a model of boththe transformations and the more interesting and potentially useful stru
ture. Wedes
ribed a way to add transformation invarian
e to a generative density model byapproximating the transformation manifold with a dis
rete set of points. This re-leases the generative model from needing to model the transformations. 5 di�erenttypes of experiment show that the method is e�e
tive and quite eÆ
ient.Although the time needed by this method s
ales exponentially with the dimensional-ity of the transformation manifold, we believe that it will be useful in many pra
ti
alappli
ations and that it illustrates what is possible with a generative model thatin
orporates a latent transformation variable. We are exploring the performan
e ofa faster variational learning method and extending the model to time series.A
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ient Statisti
s Found in the E-StepThe suÆ
ient statisti
s for the M-Step are 
omputed in the E-Step using sparse linear algebra dur-ing a single pass through the training set. Before making this pass, the following matri
es are 
om-puted: 
`;
 = COV(zjx;y; `; 
) = (��1
 + �0̀	�1�`)�1, �`;
 = COV(yjx; `; 
) = (I + �0
��1
 �
 ��0
��1
 
`;
��1
 �
)�1. For ea
h 
ase in the training set, P (
; `jxt) is �rst 
omputed for ea
h
ombination of 
; `, before 
omputing E[yjxt; `; 
℄ = �`;
�0
��1
 [
`;
�0̀	�1xt � (I � 
`;
��1
 )�
℄,E[zjxt; `; 
℄ = �
 +
`;
�0̀	�1(xt � �`�
) +
`��1�
�`;
�0
��1
 
`;
�0̀	�1(xt � �`�
), E[(z��
)Æ(z��
)jxt;`; 
℄ = (E[zjxt;`;
℄��
)Æ(E[zjxt;`;
℄��
)+ diag(
`;
)+diag(
`;
��1
 �
�`;
�0
��1
 
`;
),E[(z��
)y0jxt; `; 
℄ = (E[zjxt; `; 
℄ � �
)E[yjxt; `; 
℄0 + 
`;
��1
 �
�`;
. The expe
tations needed in(10)-(13) are then 
omputed from P (
jxt)E[z��
yjxt; 
℄ =P` P (
; `jxt)(E[zjxt; `; 
℄��
E[yjxt; `; 
℄),P (
jxt)E[(z � �
 � �
y) Æ (z � �
 � �
y)jxt; 
℄ = P` P (
; `jxt)�E[(z � �
) Æ (z � �
)jxt; `; 
℄ +diag(�
�`;
�0
) � 2diag(�
E[(z��
)y0jxt; `; 
℄0) + (�
E[yjxt; `; 
℄)Æ (�
E[yjxt; `; 
℄)	, E[(xt��`z)Æ(xt � �`z)jxt℄ = P
;` P (
; `jxt)�(xt � �`E[zjxt; `; 
℄) Æ (xt � �`E[zjxt; `; 
℄) + diag(�`
`;
�0̀ ) +diag(�`
`;
��1
 �
�`;
�0
��1
 
`;
�0̀ )	, P (
jxt)E[(z��)y0jxt; 
℄ = P` P (
; `jxt)E[(z��)y0jxt; `; 
℄,P (
jxt)E[yy0jxt; 
℄ =P` P (
; `jxt)�`;
 +P` P (
; `jxt)E[yjxt; `; 
℄E[yjxt; `; 
℄0.


