Variational Probabilistic Speech Separation using
Microphone Arrays

Steven J. Rennie, Parham Aarabi, Brendan J. Frey

Abstract

Separating multiple speech sources usinigrated number of noisy sensor measurements presents a difficuilgmo but
one that is of great practical interest. Although previgustroduced source separation methods (such as ICA) candue ito
work in many situations, most of these methods fail when #sars are very noisy or when the number of sources exceeds
the number of sensors. Our approach to this problem is to ic@the multiple sensor likelihoods (obtained using tine¢agl of
arrival, TDOA, information) with a generative probabilitgodel of the sources. This model accounts for the power spaobf
each source using a mixture model, and accounts for the pifasach source using one discretized hidden phase variable f
each frequency.

Source separation is achieved by identifying the sourcéovesonfiguration of maximunu posteriori probability, given
all available information. An exhaustive search for the MAaénfiguration is computationally intractable, but we prasen
efficient variational technique that performs approximatebabilistic inference. For the problem of separatincagetl, additive
noise corrupted speech mixtures, the algorithm is able frare upon the SNR gain performance of existing state-efat
probabilistic and TDOA-based speech separation algosthynover 10 dB. This significant performance improvemenbisioed
by combining the information utilized by these approachaelligently under a representative probabilistic degah of the
speech production and mixing process. The method is camdhbiecovering high fidelity estimates of the underlying sgee

sources even when there arere sources than microphone observations.

Index Terms

Robust speech recognition, speech separation, microphoags, probabilistic graphical models, approximate reriee,

variational methods, phase-based speech processing.

I. INTRODUCTION

In recent years, robust speech recognition has been a higiilye area of research [1], [2], [3], [4]. This area has been
motivated by compelling applications (i.e. improved hurtamputer interaction in cars and personal digital assisjaand
complicated by problems such as secondary speech sourdamae sources, as well as reverberations.

Matched training is an effective approach when the noisalitions in deployment can be well characterized, but is not
well suited for situations where the acoustic scene is uhipt@ble and/or is comprised of multiple speech sourcesulth
situations, one viable approach is to attempt to separateheutarget signal(s) of interest from all masking sourcetha
front-end, treating the problem of robust speech recagmiéis a source separation problem [5], [6], [7], [8], [9], )12 1],

[12], [13], [14], [15], [16], [17]. The target recognitiomgine can then optionally be matched trained or adapteddb@sé¢he
output target signal estimate(s) [18], [19].
In the past 10 years, most of the research on source sepata®been focused on blind approaches, and independent

component analysis (ICA) technigues in particular; wheneree estimates are obtained based on the assumption isfictht



independence, using a set of mixed observables [5], [6][8T][9]. Unfortunately, most existing source separatiechniques
are not applicable to important practical classes of theusblspeech recognition problem. Few techniques are robust t
significant noise corruption (c.f. [15], [16] for technigu@ddressing severe noise), fewer still can be applied tayddl
mixtures [9], [13], [14], and fewer yet are robust to subsitdreverberation [14].

Several spatio-temporal ICA algorithms for separatingvotutional mixtures have been developed [10], [17], [2A1]
[22], but these algorithms are not generally applicableegitin practical settings, the time-delayed, convoluiaelationship
between the underlying sources and the microphones is sitigerio source position and orientation that it is not tedole in
a straightforward fashion [23], [24]. All blind ICA algohins are limited to the recovery of source estimates thatrbitraily
permuted and scaled. The latter is a serious limitation énabntext of robust speech recognition in natural enviranme

One direction of significant progress in the last few years haen the development of probability models for speech
separation, which incorporate detailed prior informaadout the speech signal into the estimation process. \@ftmulations
have been developed and good separation results have heensteated under certain conditions [2], [15], [25], [2@itegral
to progress in this research area has been the developnueatibration of new context-dependent techniques for agipnate
inference [27], [28], [29], [30], [31]. These methods priapproximate, but tractable solutions to inference imeggntative
probability models where exact inference requires an egptiml amount of time. As such, they have facilitated thézatiion
of more representative models of speech production andhmifir speech separation.

Another direction of significant progress has been the dgwveént of time-delay-of-arrival (TDOA)-based speech safan
systems. These systems use multiple, different propagdttays to separate sources in a spatially selective wayle\ite
majority of existing approaches utilize only the TDOA (ga@si information) of a single source of interest, recentatbes in
sound localization [32], [33], [34] now allow for the simatieous estimation of the TDOAs of multiple speech sourchke. T
few multi-source TDOA-based speech separation algorittiras have been developed since lie among the state-ofrthie-a
the separation of mixtures of delayed sources that are pi@uuby additive noise and/or reverberations [4], [14],]{3%one
of these methods utilize prior information about the natfrespeech. Given that the source-to-observation transigction
in reverberative environments is highly dynamic and so gilherally be difficult to learn, spatially selective algoms for
speech separation offer an attractive and promising altinto dealing with reverberation.

In this paper, we combine techniques from the probabiliatid TDOA-based speech separation research communities,
and present a new variational probabilistic inference ritlgm for the separation of multiple speech sources usingnpst
delayed, noisy speech mixtures and a speech model. Theithigos based upon a new generative probability model of
speech production and mixing in the full (complex) spectlamain, that identifies the TDOAs of the sources as a natural,
low-dimensional parameterization of the mixing process] aaps learned gaussian mixture models (GMMs) of speech in
the magnitude spectral domain onto the complex plane. Bhdohne in a way that facilitates the derivation of an efficient
inference algorithm, that iBnear rather than exponential in the complexity of the source rhode

For the problem of separating mixtures of delayed sourcesipgted by additive noise, the algorithm is able to improve
upon the SNR gain of existing state-of-the-art probaliilisihd TDOA-based speech separation algorithms by over 10 dB

Interestingly, our method is capable of recovering highlifigeestimates of the underlying speech sources even where th



aremore sources than microphones.

This paper is organized as follows. In section Il, a new fdatian of the mixing process is presented, and source intere
under this model of mixing (when little or no prior informati about the sources is available) is considered. In setitione
extend this with a probability model of speech productiod amixing. In section 1V, inference in this model is discussed
detail. Exact inference in the model is shown to be intrdetednd a new variational algorithm to enable efficient agpnate
inference is presented. In section V, we illustrate the afpem of the derived variational algorithm for the case ofcBirees

and 2 observed (delayed, noisy) speech mixtures. In se¥tiofurther results are presented and compared to existiokw

II. TDOA-BASED SPEECHSEPARATION

In the ideal situation of negligible microphone noise andimmmental acoustic reflection (reverberation), ti¢h mi-
crophone of anM-element microphone array receives a scaled, time-delagetbination of all underlying sound source

signals:

S
fcm(t) = Z am-,SZS(t - T’r/n,s> (1)
s=1

wherea,, s and7/, . are the intensity decay and time delay associated with tbpagration of source signal to microphone
m.

When the microphone array elements are sufficiently prokirie propagation intensity decay,,  is approximately
independent ofn. When all underlying sound sources are sufficiently far afrayn the microphone arrayy,, s is also

approximately independent of the source index Equation(1) then simplifies to:

S
Tm(t) = Z azg(t — Trln,s) 2)
s=1

Whenq is not independent of as assumed, the absolute scale of the sources cannot benmegtaithout additional information,
as will be discussed further shortly.
The propagation delay of a given source at each microphorwyebmdurther decomposed into a common delay, and a delay

relative to a chosen reference microphone:

’
Tm,s = Tmyeg,s + Tm,s (3)

Tm,s 1S known as the time-difference-of-arrival (TDOA) of soaerg at microphonem, relative to the chosen reference
microphone. From here on in we will absorh, . ; s into our definition of the speech sources.

An equivalent representation of the relatid@) {n the frequency domain is given by:

s
Xm|w] = Z eI 7 W] 4)
s=1

1In typical settings of practical interest (e.g. home or eff&ettings),« is (for all practical purposes) independentofvhen all of the sources are more
than one meter away from the microphone array [34].



where Z;[w] is the N-point Discrete Fourier Transform (DFT) of the¢h (sampled) sound source signal at center frequency

W= Frws:

27w

Zs|w] = Z 2s(nTs)h[nle 7N " w=0,1,--- ,N -1 (5)

andX,,[w] is similarly defined. Heré|n] is a (generally non-rectangular) windowing function, and= 27 /T is the sampling
rate, in radians per second.

Note that for finite block lengtiv the relation 4) is only approximate due to windowing effects (spectrattihg), and any
non-stationarity in the source signals(t) over max,, 7, s. For typical speech analysis windows (10- 100 ms), and &}pic
values ofr,, ; for a proximal set of microphones,{ < 3z ms for anxz meter linear array of microphones, for example),
however, the error in the relatiod)(is negligible.

The relation 4) can be expressed in cartesian form as:

S
Xp[w] = Z A, s[W|Zs[w] (6)

where:
COSWTm,s  SINWTp, s
A siwl=a
—SINWTm,s COSWTm,s

Z.[w] = [R{Z,[w]} S{Z[w]}]T, and X,,,[w] is similarly defined. The system of equations defined by dpgly6) over all

microphonesM, then, can be written in matrix form:

X [w] Aialw]  Aiglw] -0 Ags[w] Zy [W]
Xa[w] _ Azalw]  Ass(w] Az s[w] Zs[w]
X [w] Anmalw]l  Analw] - Anis[w] Zs[w]
or:
X[w] = A[w]Z[w] @

where Ajw] = (A, s[w]), Z[w] is a2S-dimensional vector, formed by stacking the vectdrgw] over all S, and X[w] is
similarly defined.

Given the time delay ensemble,,, s} then, we have for each segment, a systemeaf, linear equations constraining the
underlying source signal spectra. Note that whemot independent of as assumed the only consequence is that the constraints
for each source in (7) are scaled by/«, over all frequency. The formulation is otherwise entirphase-based, and therefore
scaled estimates of the sources of uncompromised qualitybearecovered using (7) when is not independent of. In
contrast with blind intensity-based source separatiohrtiggies, this formulation is well suited for situations whé¢here are
far-field sources, and the relative scale of the sources lezgays be recovered. When (7) is combined with probabiligtior

information about the sources, scale variationga outside the inherent variability of the sources can be corsaied for by



using multi-condition trained models, or by explicitly @fing the model scales during source inference.
In practical environments, however, the microphones dings z,,(t) will generally be corrupted by transduction noise,
acoustic multi-path, and secondary (unmodelled) soundcssuLet thenet noise corruption at microphone recording at

time ¢ be denoted by, (¢t). Microphone recording:,,,(t) can then be expressed as:

S
Tm(t) = Z azs(t — Trln,s) + (1) (8)
s=1
Considering all microphone recordings simultaneously aroving into the spectral domain, then, we obtain:
X[w] = A[w]Z[w] + N[w] )

whereN|[w] is defined analogously tX[w] and Z[w] in terms of{n,,(¢)}. We now consider the problem of estimating the
source vector§Z[w|}, based on TDOA information alone (vigA[w]}), given noise corrupted source mixtures (microphone
recordings). The discussion is intended to serve as a faimmdaand motivation for the development of a new generative
probability model of speech production and mixing for sgeseparation, which will be presented in the section Ill.

In special case of an equal number of sound sources and rhimmepobservations, given the mixing mat?w| and the
microphone observation vect®[w] we generally expect to be able to recover an estimate of theeswectorZ[w] via direct

inversion:

Zlw] = Alw] 'X[w]

Z[w] + Alw] ' N[w] (10)

The termA[w]~'N|w] is the error in the source vector estimatév] due to noise, and will be large whé¥|w] is large
and/orA[w]~! has large entries.

In the case of two sources and two microphones the detertifaf[w] is given by:
det A[w] = 2a*{1 — cos(w(r2.1 — T2.2))} (11)

which means thaiA[w] is not invertible whenuv(m 1 — m22) = 27k, k an integer. This occurs when the TDOAs of both
sources are equal, and more commonly when signals arrivamy €ach source at a given frequenchave a common phase

difference at the microphone observation points, thus inéeg indistinguishable:
w(Te,1 — To2) = 27k <=> wTe1 = wTa o + 27k (12)

Similarly, for squareA[w] of arbitrary dimension invertibility is lost when:

S S
Z asexrp(—jwTs) + Zjbsexp(—jwrs) =0 (13)
s=1 s=1
for a non-trivial set of real constanfs, bs }. Herer is the TDOA ensemble of soureén vectored form ¢ = [11.5, 72,5, -+, Tars| 1),

and theexp operator represents element-wise exponentiation. Eaquéti3) is satisfied non-trivially if and only if the columns



(rows) of A[w] are linearly dependent. FdWl > 2 a given source TDOA ensemble corresponds to a unique positi@-D
space, so generallx[w] will not lose invertibility at all frequencies. The detemmant of A[w] is continuously differentiable
function of w. Therefore we expect that the noise corruptionZfw], even whenA[w] is invertible, will be severe in the
immediate region of singularities iA [w].

When there are more microphones than sources the leasescgestimate:
Z[w) = (A[w]" A[w]) " A[w] " X[w] (14)

can be applied to obtain an estimate of the source vectoreguéncies wherd [w]” A[w] is invertible. The solution (14),

when it exists, minimizes the objective function:
J[w] = [|A[w]Z[w] — X[w]||? (15)

The least squares solution is considered the best limg@z@iased:stimator of the source vector given the microphone obtiens
andA[w], as(A[w]T A[w])"tA[w]T has the smallest squared sum over its elements of any leftsevforA [w]. This property
is desirable because it means thiatfw]” A[w])~'A[w]? is the matrix inverse that amplifies additive zero mean olzgiEm
noise which is uniform over the observation vector the lelasgeneral howeverA [w]” A [w] may not be invertible, and/or we
may want to bias the estimation @f{w] based other known information to improve upon the estimatieen there are more
sources than microphones, for example, the inversion afioglship (7) is under-constrained by (at le&s)-2M dimensions
at all frequencies.

Estimation of the source vector whexiw] and A[w]” A[w] are not invertible and reduction in the level of noise cofiup
whendet A[w] (for the case of square mixing) is small can be accomplisigedtboducing additional constraints tha@gularize
the estimation towards solutions that are expected or nede given what is known about the problem.

The complexity of regularization schemes vary from thefiaidilly simple to the enormously complex. In many cases very
little or no prior information about the nature of the entitging estimated is available, and we must resort to very Isirfiqut
nevertheless very useful) regularization schemes.

Perhaps the most common form of regularization applieditdgrary linear systems where little prior information isaitable
is to modify the objective function (15) to include a termtticanstrains a norm or "energy measure” of the solution vecto
the idea being to discriminate against estimates out ofsiiiéei range. In particular, high energy source estimatas dhe
the result of noise put through high gain inverse transftiona are discriminated against, and in the case of degenera
insufficient constraints, data inversion is facilitated,vee shall see in a moment.

Augmenting the objective function (15) to constrain theasgd (L2) norm of the solution vector we have:
J'[w] = ||A[w]Z[w] = X[w]||* + po[w][| Z[w]||* (16)

wherep[w] is a free parameter that can be tuned to adjust the relatigeriance of the two constraints.



Minimizing J'[w] with respect toZ|w] we obtain:

Zyelw] = (Alw]TA[W] + p[w]]) "  Afw] "X [w] a7
Here we can see that the introduction of a constraint on the rd the source vectdZ|w] results in an additional additive
term u[w]! in the data inversion. For non-zerdw| the (A[w]? A[w] + u[w]I) term is guaranteed to be full rank, and so the

estimate forZ[w] can always be obtained: regardless of the dimensioA [@f]. For a given situation, the value pfw] can
be set optimally based on estimation results on validatata.d\Note that1(7) can alternatively be derived as the maximum
a posteriori (MAP) estimate oZ[w] under the assumption that the prior distributions Mjw| and Z|w| are zero-mean,
independent, isotropic Gaussians, with variance rafig|.

The minimum norm constrained least squares solution hasitgefitility in situations where only vague information aibo
the strength of the signal and/or noise corruption is alséglabut is limited by its simplicity. A number of other reguization
approaches for situations where limited context infororatis available have been developed [30], [36]. In situatiamere
detailed information about the nature of the underlyingsewignals is known, this information can and should berpomted
into the estimation process. In the next section we develgprerative probabilistic model of speech production anxingi
built upon the utilization of the ensembl&[w], to facilitate the incorporation of detailed informatiobcaut the underlying

sources and the environment into the estimation of the lyidgrsource vector.

IIl. TDOA-BASED PROBABILISTIC SPEECHSEPARATION

In the previous section we saw that the acoustic source agpaproblem can be described in the frequency domain by

the relation:
X[w] = A[w](T, a)Z[w] + N[w] (18)

at each frequency, wher&[w] is as defined previously and is a function of the source pratiay intensity decayy, and
the TDOA ensembles of the acoustic sourees {71, 72, --Ts}. This is a 'hard’ description of the problem, that describes
how the microphone observations at each frequency may berafed, given the precise values@fiw], N[w], o, and .

Let Z = [Z[0]",Z[1])T,--- ,Z[N — 1]T]T, and letX and N be similarly defined. In genera%, N, «, and T will not
be known or observed, and therefore represent underlyiitgiem’ random variables of the mixing process, that must be
simultaneously inferred to recover estimates of the speatrthe underlying acoustic sources. Inference of thesmblas
should ideally be based not only upon the observed microplotaservations and the utilization of the relationship (18t
also incorporate all we know about the current state, gémbi@acteristics, and inter-dependencies between thasables
into the estimation process.

In this section we develop a generative probability modekpéech production and mixing to facilitate the intelligent
utilization of information about the nature of speech ara ¢hrrent application context during speech source estimatere
we concentrate on the development of a model for the situatibere all explicitly modelled acoustic sources are speech

sources. It must be emphasized, however, that in situatidrese it is desirable to explicity model other types of astou



sources, gaussian mixture models (GMMs) for these soumeseamlessly be substituted into the model and utilizethgur

source inference, as the speech model we will develop afideuis a GMM.

A. Modelling the Speech Sources

Let Z, = [Z,[0]T,Z,[2)7,--- ,Zs[N — 1]T]T. Here Z, is simply the N-point DFT of sources, in cartesian, vectored
form. Note thatZ may be formed by interleaving the vectdss (Recall thatZ = [Z[0]7, Z[1]T,--- ,Z[N — 1]T]T and
Zw| = [(Zu[w]", Zo[w]" - Zs[W]"]").

In general we expect that the underlying prior distributidrZ: (prior to observing the microphone array data) will be cedlpl
over s, and potentially dependent on the position ensemble of dbieces (people in a common conversation do not generally
speak simultaneously and are often located proximallyef@mple), but here we will assume that the prior distributiwer

Z factors overs, and is independent af and «:

P(z) =[] P(z,) (19)

The magnitude spectrum of speech (or a transform of it),tebéished as an excellent feature space for characteriiffegent
speech sounds [1], [37], and signal-level models of speetiei magnitude spectral domain have been widely appliegdech
separation problems [15], [25].

When doing speech separation based on multiple micropheec@dings in the frequency domain, however, the mixing
process has both amplitude and phase components, and scotparate prior information about the nature of speechs it i
essential to move to the full spectral domain, so that botplitmde and phase corruption can be filtered. Here the fidelit
of the recovered spectral magnitude and phase estimatebemioupled for each source, and across sources: therefere e
in cases where we are interested only in recovering the rhatmispectrum of a given speaker (for input to a magnitude
spectrum-based machine recognition system, for examplagerepresentation during source inference is critical.

Although it is well known that the spectral phase of speedfjeiserally coupled across frequency and time (e.g. for dice
speech), this knowledge is difficult to utilize in practiaes these dependencies are a function of the unknown statee of t
vocal chords and vocal tract, and are obscured by frequearapling and signal windowing [1].

Here we pursue the development of a probability model of dpeae the full spectral domain that incorporates detailed
information about the nature of speech (as characterizetidnrmagnitude spectral domain), and is phase-invariantietyn
this model the equi-probable surfaces of the probabiligtritiution of a given class of speech in the frequency doraain
postulated as rings in the complex plane at each frequerfugteathe radial mode of the speech class will vary in intgnsit
over frequency, corresponding to the prototypical configon of the magnitude spectrum of the speech sound (seeeFigu

The current standard signal-level model for speech in tileshectral domain is a mixture of zero-mean Gaussians [38],
[39]. This model is attractive in the sense that phase-iamae is trivially achieved, but undesirably ties the repreaation of
the mean and variability of the underlying speech classes.

Here we will represent speech in the full spectral domain dsrring a (diagonal-covariance) GMM representation of

speech in the magnitude spectral domain, and then rotdimépairned model (at discrete, regular intervals, introduphase



Im{Z s[wl}= (Zs[w])[2]

ch,esm:g
“CSYGS[W]:%
“ chves[w]:()

Heg 05iwi=0

| Re{Zs[w]}= (Zg[w])I1]

P(Zg[w]| cs,6s[w] = 0)= N(Zg[w]; He  0ghl=0> ZCSYQS[W]ZO)

P(Zs[w]l CS’OS[W] = %): N(ZS[W]; uCS’eS[W]: %1 ch'es [w]:%)
Fig. 1. We represent speech in the full spectral domain hyieg a (diagonal-covariance) GMM representation of shee¢he magnitude spectral domain,
and then rotating the learned model (at discrete, regutervials, introducing phase covariance proportional todhesen interval size) at each frequency,

about the origin of the complex plane. The result is a GMM nhaifespeech in the full spectral domain that incorporatesitit information about the
nature of speech (as characterized in the magnitude spdotrain), and is approximately phase-invariant as desired

covariance proportional to the chosen interval size) ahdmmuency, about the origin of the complex plane. The tdsuh

GMM model of speech that is approximately phase invarianergby:

P(Z;) = ZP(CS)H Z P(0s[W])P(Zs[w]|cs, 0s[w]) (20)

w0, [w]

1
P(cs) = me,, P(0s[w]) = R, o]

P(Zs[wlles, 0s5[w]) = N(Zs[w]; He, 0,[w]s ECS,OS[W])
He, 0,w] = ROS [(wlHec,,0,[w]=0
_ T
X 0.w] = Ro,fwZic. 0. [wl=0L, [w]

Note that the notatiod() here has been used to denote both probability and prolyatiditsity functions: a convention that
we will follow for the remainder of the paper, in the interastfacilitating general discussions on probabilistic iefece,
and improved aesthetics. The notatidf(y; a, B) here and for the remainder of the paper will be used to den@ausssian
probability density function (PDF) over the random vegtowith meana and covariance matriB. The notationX,, here and
from this point forward will be used to denote the total humbkpossible configurations of the random variable

In (20), ¢s is the Gaussian mixture index of a speech class identifiethgluraining in the magnitude spectral domain
(the indice is speaker dependent, the associated corlititistribution may or may not be), affd[w] is a discrete random
variable that effectively represents the 'coarse phasehefspeech sound at frequeney 6;[w] is assigned a uniform prior

distribution so that the marginal pridt(Z;[w]|c,) will be approximately phase invariant. Figure 1 illusasthow the resulting
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GMM models of speech in the spectral domain at each frequéoicg given speech class, are approximately phase inarian
as desired. Hergu._ , 4j—o and X, . [w=0 are the mean and diagonal covariance of the conditionallysgian PDF over
Z;[w| defined bycs andf;[w| = 0. p._ g 1wj=o has first (real) component equal to the mean of speech claasfrequency

w as identified during training in the magnitude spectral domand second (imaginary) component ze¥y. g [wj—o IS @
diagonal matrix with first diagonal entry equal to the vadarf speech class at frequencyw as identified during training

in the magnitude spectral domain, and second diagonal enitgbly chosen in accordance with the granularitydfv] to
achieve phase invariance. Hef, [,,) is a deterministic rotation matrix.

Our approach facilitates the direct mapping of GMMs of spdearned in the magnitude spectral domain into correspandi
phase-invariant GMM models of speech in the full spectrahdim. Note that when the input GMM model learned in the
magnitude spectral domain is zero-mean, the phase vasi#hler] become redundant and representation reduces to the
standard model [38], [39]. Our model can therefore be thboflas a generalization of the standard model, that fatgktahe
independent representation of the mean and the variabilithe magnitude spectrum of speech sounds (or optionaligrot
acoustic phenomena), in the full spectral domain.

An important feature of our model of speech in the full spgcttomain is that it is a GMM (as opposed to a non-linear
transformation of a GMM). The utilization of this source nebéh combination with the conditionally linear formulatiaf
mixing presented in section Il, then, will allow us to comstra probabilistic description of speech production andimgi
that is conditionally Gaussian. It is this property of ourrfwilation that, by design, facilitates the developmenthaf &nalytic

inference algorithms presented in section IV.

B. Modelling Propagation Decay

In general the intensity decay ensemble associated withptbpagation of the source signals to an array of proximal
microphones will be a function of the positions of the speskelative to the microphones. In far field conditions these
dependencies dissolve and the propagation intensity deeasil approximated as common across all sources and niioras.
For a given environment this scaling can be calibrated, haduhcertainty associated with this estimate can be queohtify
a probability distribution for the propagation scale basadhe calibration.

Here we will assume that the propagation decay constastprecisely known:
P(a) = §(a—a') (21)

The performance impact of assuming an incorrect propagatale value for one or more of the sources was discussed in

detail in section II.
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C. Modelling the Source TDOA Ensembles

The TDOA associated with a given source-microphone paifir(dé relative to a chosen reference microphone) is a

deterministic function of the position of the source refatto the (chosen and reference) microphones:

P(Tsnn|Psa Pms pmmf) = 5(7-87"” - f(psa Pm> pmmf))

(22)

wherep, = [psw,psy,psz]T is the position of source, and p,,, and Pm,., are similarly defined. The deterministic mapping

function f(ps, s P, ) IS given by:

|ps - p’m' - |ps - p'rrb7vef|
14

f(Ps: P> P, ;) = (23)

wherev is the speed of sound in air (generally taken as 345 m/s inoindavironments).

In general, the positions of the underlying sources will betknown, and will have be estimated by a sound localization
engine [40], [32], [33], [34], [41]. Sound localization ¢gms capable of estimating the coordinates of multiple legrsain
real environments exist, and have demonstrated localizattcuracy on the order of 10 cm under very general condi{i@8],
[34]. In this paper, we focus on the development of a speephradon algorithm that utilizes point estimates of theifarss

of the underlying sources to perform speech separationaasdane in [4], [13], [14], [35], [42]:

P(Tims) = /P(p’s)é(fm,s—f(p’s,pm,pmmf))dp’s
p

/
s

= 5(7-m,s - f(ps’ P> pmref)) (24)

D. Modelling Microphone Noise Corruption

The noise corruption at the microphone array will generatinsist of unmodelled sound sources, transduction noisk, a
non-stationary multi-path from all underlying sourcesréigve will represent all noise corruption as zero mean andrgkc
order. Note, however, that when localized noise sourceprasent, they can be optionally be modelled explicitly:emed with
GMM priors in the full spectral domain, and seamlessly edads 'speech sources’ to be inferred during source infetéftee
conditional probability of the microphone observationgegi the source vectd, the propagation scale, and the collective

TDOA ensembler, is then given by:

P(X|Zaaa7) = HP(X[W”Z[W];aaT)

[TVXW; Alw)Z[w), @[w]) (25)

where ®[w] is the covariance of the microphone noise corruption atueagyw. This is simply a probabilistic form of the

deterministic relationship between the hidden variables the microphone observations developed in section II.



12

i ! i !
LMicrophone 2 1 LMicrophone M '

! Microphone 1

Fig. 2. A Bayes Net depicting the dependencies that existd®ri random variables of the speech production and mixingess.

E. A Generative Probability Model of Speech Production argimd

The overall generative probability model of the speech potidn and mixing process is given by:
P(X,Z,c,0) = HP(X[WHZ[W], a,T):

[T P(co) T] P(6sIw) P(Zs[w]|cs, 6s[w])

S

= [V (X[w]; A[w]Z[w], ©[w])-

1
I I7Tcs | | Ry : ]N(Zs[w];“’cs,es[w]?ECS,Q‘S[W])
s w sIW

Wherec represents the speech class enserfblecs, - - - cs }, and@ represents the spectral phase enseri®lefa, - -- ,0s},
wheref, = {6,[0],0s[1], 65N — 1]}. Here we have omitted variables whose values are preciseiwik or are extraneous to
the representation of the mixing process, given their idistion.

Under this probabilistic description, microphone obstores are generated as follows:

« A speech sound is emitted from each speakeiith probability p(c,) = =, .

« The coarse phase of each speaker, at each frequency, isnolgifgenerated from the domain 6f[w].

« Given ¢, and 8, and instance of the speech sound is generated from the tiooradidistribution P(Zs|cs, 65) =

[Ly N(Zs [W]; e, 9, (w)s Be.0.1w))» TOr all speakers.
« GivenZ, the microphone observations are generated accordif¥Z) = [[,, NV (X[w]; A[w]Z[w], ¥[w]).

Figure 2 depicts a Bayes Net describing the dependenciegxist between random variables of the model.
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IV. SOURCEINFERENCE

Given a trained probability model speech production andmgixhe problem of estimating the configuration of the uhdeg

speech sources based on the observed mixtures becomes prababilistic inference [27], [43], [44], [45].

A. Exact Inference

In this section we consider the application of exact infeeeander our probability model of speech production and mgixi
for two criterion; minimization of the expected mean squamer of the source vector estimate, and identification efaburce
vector of maximum a posteriori probability.

We discover that exact inference under our speech separatidel for both estimation criterion will generally be enxttable,
thus motivating the requirement for an approximate infeegiechnique to facilitate source vector estimation urfakedeveloped
model.

1) Expectation-Based Estimat@®ne possible choice of source estimate is the conditionp¢eation of the underlying

speech sources given the microphone observations, whicimies the expected squared error of the output estiméle [3
Z = E{Z|X}= / ZP(Z|X)dZ (26)
Z

Because the source densities have been parameterized@mirsgian mixtures, the observation noise has been modaslled
Gaussian, and the relationship between the underlyingceewand the microphone observations has been expresseméag |
form, (26) can be evaluated analytically.

The probability of a source vector configuratimonditionedon a given configuration of the and 6 is Gaussian:

P(Z|Ca0) - HHN ”’Cb 0s [w]azcs,és[w]>

HN i Beofu]s Ze.00w) 27)

Where e gr) = (142, 6, (w)s Hes0afw) "+ Peg,0sw)) » ANADc o) = diag[Ee, o, (w)s Bes 050w+ » Bes,05w]- The probabil-

ity of an observation vector configuratiocpnditionedon a given configuration of the source vector is also Gaussian
P(X|Z) HN |Z[w], @[w]) (28)

The conditional posterior of the source vectB(Z|X, c, 8), can then be written as:

B P(Z|c,0)P(X|Z)
P(Z|X,c,0) = I, P Z|c0 P(X|Z)dZ
_ H/\/ i e 01w+ Ze.o0w)) 2

where:

e o] = Ze,opw) (AlW] T ®[w] ™' X[w] + E;E[W]Hc,e[w]) (30)
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com = (AW W] T AW + Z75) 7 (31)

Given the observation vect@ and the variables and@, then, the conditional source vector postefiZ|X, c, 0) is Gaussian.
Looking at (30), we can see that the mean (mode) of this Gamssait each frequency, is influenced by both the observed
microphone data and the mean of the conditional source ptitltat frequency, where the weight assigned to each infeuenc
depends on the relative uncertainty (inverse covariant#)eocompeting information.

Note that becausZ, g and ¥ g[,, are covariance matrices their inverses will always exist la@ of full rank, and that
the inverse of the mixing matripA is not required in the computation. As a result we ateays able to compute (30) and
form an estimate the source vector based on the observaticory regardless of the dimension and sparsity of the mixin
matrix A. The incorporation of prior information about likely configitions of the source vector can be viewed as an optimal
form of regularization.

The expected configuration of the source veddwr| under the marginal posterid?(Z[w]|X) is given by:

E{Z[W]IX}Z/ Z[w|P(Z[w]|X)dZ][w]

Z[w

= P(c[X) Y P(O[wlle, X[w]) E[Z[w]|X[w], c, O[w] (32)

c O[w]

where the posterior distributionB(c|X) and P(€[w]|c, X[w]) may be computed via:

. II, . I1., Ze[w] P(X[w]|c, O[w])
Pl = = o T, S POXWIIC, O] (33)

P(X[wl|c, 8[w])
P(O[w]|c, X[w]) = (34)
Ollie XD = 5 PXwle, 0w
where:
P(X[w]|c, O[w]) :/Z[ ]P(Z[W]IG[W],C)P(X[W]IZ[W])
DI
~ 2mM2[S g [ W w12
6_%{/—‘7;6[“/]E;é[w]l"c,e[w]+X[W]T‘I’[W]71X[W]—I—L,c?ﬂe[w]z:;,g[w]#;,e[w]}
(35)

is the likelihood of{c, 8[w]|} given the observed microphone observations.

Looking at the expectation-based estimate result (32),amesee that the overall source estimate, at each frequergiyen
by a weighted average of the conditional expectatiB{Z[w]|X[w], c, 8[w]} over all possible configurations efand 8[w],
where the weight assigned to each configurafioy@[w]} is given by the posterioP(c, 8[w]|X) = P(c|X)- P(0[w]|c, X[w]).
Note that the expectation-based estimate is coupled ogquéncy by the speech class postefge|X).

Because the summation over all configurationg @nd 6[w] in (32) is coupled over the source densities (the compurtatio

of (32) requires that we average ol c = {c1,co, - ,cs} andO[w] = {0 [w], 62[w], Os[w]} at each frequency, where each
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configuration{c, 8[w]} defines a unique conditional estimalg Z[w||X[w], c, 8[w]}), the computational complexity of the
expectation-based estimal& Z| X} is exponentially dependent on the number of speech sourndstherefore will generally

become intractable to compute as the number of sources lesclamge:

c(B{ZIX}) o< N T Re, R, jw 0¢ N((Re,) (Rg, () (36)

where®,_ denotes the total number of possible configurations of thelam variablevs, and (X, ) denotes the geometric
mean ofR,, overs. If each source model is (minimally) parameterized by a I@ponent diagonal covariance GMM in the
magnitude spectral domain rotated discretely at 32 inteffea 64 frequency bins, for example, the computation igprtional
to 64 - (16 - 32)% = 25499 for a single processing frame of inference (10-50 ms of)data

Note that stochastic dynamic programming (viterbi infeen[1] cannot be applied in this case to efficiently compbte t
expectation-based estimate (32) or the required possdi3®; 34), because source inference is fully coupled by tlseophone
observations, at each frequency, by the mixing layer of tloeleh The presented updates have been simplified as much as
is possible given the structure of the problem formulatibhe conditional marginalg P(cs, 0s[w]|X, ¢s—1, 0s—1[w])}, if
available, for example, could be used in a stochastic dyngamigramming algorithm to do inference, but will generdily
computationally intractable to compute, because the maligations required are fully coupled over the sources.

2) MAP Estimation: An alternative utilization of our model of speech produstiEnd mixing is to attempt to identify the

source vector configuration that is of maximum a posterioobpbility (MAP) given the observation vector:

Z = argmax P(Z|X) = argmax P(Z,X) (37)
z Z

Here however, the computation &f(Z, X) is once again of computational complexity exponential i@ ttumber of sources:

P(Z,X) = Z Z P(Z,X,c,8)
c 2]

=> .1l R : > P(X[wl|c, 8[w]) P(Z[w]|X[w],c, 8[w]) (38)

11 6[w)

c(P(Z,X)) o N((Xe,)(Ro,w))” (39)

and therefore will generally be intractable to compute whr@number of sources becomes large. The exact computdtion o

even a local MAP estimate, therefore, will generally not lbsgible.

B. Approximate Inference

The goal of approximate inference is to facilitate the eation of hidden variables of interest under a given proligbiodel
and error criterion, when exact techniques are computatipimtractable. The challenge is to utilize the infornoaticontained
in the full probabilistic description in a way that makesimsition tractably computable, while compromising minimain

the fidelity of the resulting estimate.
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A fundamental advantage of approximate techniques forénfee is that they utilize the full probabilistic descrigtiof the
problem to be solved and approximations are made pobteriorto observing the currently available evidence.

In contrast to the alternative—building a simpler probahi# description of the problem that facilitates exacteirghce—
approximate inference techniques are superior in the séragehey utilize the context provided by the current stdt¢he
observables, thus minimizing the impact of the approxiortithat must be made to facilitate tractable estimatiocoRery
of the optimal estimate under a given criterion is not agbimg often achieved, depending on the problem and the approa
to approximate inference taken.

Several approaches to approximate inference have beetopede including Monte Carlo Sampling techniques, Iterti
Conditional Modes (ICM), Loopy Belief Propagation, and id#ional Inference methods [27], [28], [29], [30], [31].

In this section we develop a variational inference algomitfor speech separation that facilitates tractable souemtov

estimation under the presented probability model of spgecHuction and mixing.

C. Variational Methods and Variational Probabilistic Imence: The Fundamentals

Variational methods may be defined in a broad sense as a timfieaf approximate techniques for transforming complex
problems into simpler ones, where problem simplificatioadkieved via the introduction of additional 'variationpfirameters,
which are fit to produce an approximate representation ofsfangproblem, that is easier to solve. Generally this is aghie
by defining a variational parametric framework that assuswae amount of decoupling of the degrees of freedom in the
problem, and generally variational representations arenfia context-dependent basis.

While the ’'input’ problem description is normally represstive of the problem in general, a given variational dgson
is generally only representative in a reduced region of Bfgm space’. Provided that a given variational descripi®n
representative of the problem instantiation at hand, atisoltio the problem can in principle be obtained through ttilezation
of the variational description as a surrogate. The fidelftthe solution and the ease in which it is obtained of courgeedd
on the ability of a chosen variational framework to simuétansly represent the situation and be computationallgcive.

Variational inference in generative probabilistic gragahimodels is achieved by identifying a surrogate postelistribution,
Q(H|E, \), for the hidden (unobserved) random variables of the ma@elgiven the currently observed evidendg, when
the true posterior distribution of the hidden variabl&,H|E), is intractable or expensive to compute. Hergepresents
the variational parameters of the surrogate distributwnich are set by minimizing the Kullback-Leibler (KL) divggnce of

P(H|E) from Q(H|E, \):

_ QH|E, \)
K = ;Q(H|E,)\)1n PUHIE) (40)
which may be equivalently minimized by minimizing:
;o QUIIE, N
K = ZH:Q(H|E,>\)IH PH B
— K—-InP(E) (41)

since the probability of the observed evidence is indepeinofethe variational parameteis Note that here we use the notation
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>y to denote sums and integrals over the hidden variablg$ &s appropriate, in the interests of facilitating a geneedl y
brief discussion.

This effectively transforms an inference problem into arirojzation problem: the key to variational inference beiiog
define the form of the variational surrogate such that it wefiresentative, and tractably identifiable via the minatian of K.
OnceQ(H|E, \*) has been identified, it may be utilized to make predictionzualbhe configuration of unobserved random
variables of interest. Inference und@(H|E, \*) will generally be computationally inexpensive or trivias the assumed
form of Q(H|E, ) has been chosen so as to facilitate its tractable ideniditahnd therefore will have a decoupled form
relative to the form of true posterior distribution. Theliatition of (40) as a criterion for selecting(H |E, \*) is based upon
some powerful results from convex analysis [46]. A comprsihe introduction to convex variational methods, andatarnal

probabilistic inference, is given in [28].

D. A Variational Inference Algorithm for Speech Separation

We now develop a variational algorithm for tractable sotuinderence under the generative model of speech productidn a

mixing presented herein.

We define the variational form of the surrogate distributipras follows:

Q(Z,0,c|X) = HQCS|X HHQ o [W]|X) - HQ Z[w]|X)
_H{X&H'Ye it HN Z[w],m[w], Q[w]) (42)

where {{xc. }, {7o,w }> {nlw]}. {€[w]}} are the variational parameters to be found so thabest approximates the true
posterior of the hidden variables under our speech separaibdel.

To identify Q(Z, 0, c|X) we minimize the KL divergence aP(Z, 8, c, X) from Q(Z, 0, ¢|X):

WS [ QLS

Becausel)(Z, 0, c|X) is Gaussian irfZ and P(Z|X) is a mixture of Gaussians, the variational parameters tleatimize K
will naturally tend toward a mode dP(Z|X) [15], [28]. Thus source vector estimation under either tligimmum-mean square
or maximum a posteriori criterion one@ has been identified, reduces to selecting the mean (and nobdg)Z), n

Exploiting the conditional independencies, linearity,uSsian decomposition of the modB(Z, 6, c, X), and the factored
form of Q(Z, 6, c|X), we arrive at the following set of coupled fixed point equasidor the variational parameters, that may

be iterated (according to any chosen update schedule wrtihgeter convergence) to identify.

B 1
1/263319{—5 Z Z Y0, w)de, 0. [w]} (44)

W f[w]

Xes X Te, Zc

s

1
Yo,, e:cp{*i Z Xe. Z de,0.w)} (49)

w
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nlw] = Qw](A[w]" @ [w] " X[w] + ¢[w]) (46)
Qw] = (A[w]" ®lw] " Afw] + ®[w]) " (47)

ch,Gs[W] = (HCS,QS[W] - ns[w])Tz;l,Gs [w](ucsﬁs[w] - ns[w])
—&—Tr[E:Gs [w] Q;[w]]

@[w| = diag[®1[w], P2[w], -, Ps[w]]
o, [w] = Z Xes Z 79S[W]Z;Sl,9s [w]
Cs 0s[w]

Cwl = [¢yw]", Colwl ™, Cslw]TTT

CS[W] = Z Xes Z WGS[W]EC_SI,QS[W]HCS,GS[W]
Cs 05 [w]

The variational update equations (44-47) have intuitiveesh Examining the update rule for speech class prohabilit.. ,
for example, reveals that speech classes with associateliticnal distributionsP(Z|c,, 05) = [ [, N (Zs[W]; pc, o, [w)> Ze. 0.[w])
that are 'close’ to the current estimate of the posteriotrithistion of the source vectdp(Z;) =[], N (Zs[w], n,[w], 2, [w])
under the metriezp{—3 X", 220 [w] V0. [w e.,0.1w) } Will be assigned high probability. The terms of this metrie aveighted
by the posterior distribution of the discrete phase vaesi{lf;[w]}, {7, }. The update rule fox., for fixed n [w], Q[w],
and-y,,_[,, decouples over the sources, but couples the variationadente algorithm over frequency for a given source. The
update rule for the posterior distribution of the discreteage variabled[w], vy v, Similarly assigns high probability to
configurations of;[w] with associated conditional distributiod¥Z,[w]|cs, 8s[w]) that are close t&)(Zs) under the metric
exp{—3 Ye. Xea Doy de,0.[w)}» (Whose terms are weighted by the posterior distributiothefspeech classes.., ).

The update rule for the posterior estimate of the sourceovettfrequencyv, n[w], moreover, can be viewed as a weighted
average of a data influence and source model influence tewngirlg at the elements of the terfifiw]| corresponding to a given
source([w], we can see that they are formed based on a weighted averéige agnditional prior meang,._ ,_ ., associated
with the source, where the weight assigned to each mean ésl hgeon the current estimate of thesteriorprobability of the
configuration{cs, 6;[w]} (given by the produck..vs,w)), and the associated conditional prior inverse covariaﬁdgsées[w].
Similarly the elements of[w] associated with a given sourde,w] , are formed based on a posterior probability-weighted
average ovell. g (w]-

Surveying the variation update equations, we can see thaf #he required marginalizations decouple over the sairce
This result is a natural consequence of the chosen struofuilee variational surrogate distribution, which assuntes the
posterior distributions associated with the variallemnd & are not coupled over the sources. Similarly, the chosertsim
of the posterior distribution foZ[w] ensures that source inference is coupled over the sources.

For a given source, inference is coupled over frequencyutiitdhe speech class posterigr,. The variational algorithm
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is thus able to filter the observation influence towards potgbaonfigurations of source spectra through the utilizatib the
frequency correlation information contained within theis® priors. At a given frequency, inference is also coupleer the
sources by the updates f¢fw] and Q[w] via correlation information inA[w].

The variational inference algorithm is therefore coupledrahe sources and over frequency, but not simultaneothig.
would require that the structure of the surrogate postealigtribution for the speech classes be coupled over thecespand
lead to an algorithm that has complexity exponential in tbenber of sources. Nevertheless, the algorithm does prawde
with a way to intelligently combine available probabiltsinformation about the underlying sources with informatfoom
the observed source mixtures in a rigorous manner, thatttstbactably computable, and intuitively appealing. Thgoaithm
facilitates the utilization of a full probabilistic desption of speech production and mixing, making approxinregionly
posteriorto observing the available evidence.

Because the marginalizations in (44-47) are not coupled inesources, the computational complexity of the algarith

linear rather than exponential in the number of sources:

c(E{Z[X,Q}) o< Nits NS(Re, ) (Ro, [w]) (48)

s

where N;; is the number of iterations applied over the fixed point eiguatfor the variational parameters.

The derived variational inference algorithm does not regjthat A[w] be invertible, and makes no assumptions about the
number of sources or the number of microphones in the prabfdinmatrix inversions in the variational update equatiame
on full rank matrices and so stability of the algorithm is @mesl. No restrictions on the form aF|w], the covariance of the
microphone noise at a given frequency, have been imposedalforithm can thus be applied in principle to the sepamnatio
an arbitrary number of speech sources using an arbitrarypeuof microphone observations, corrupted by possiblyatared
noise.

Comparing the expectation-based estimate of the sourdervernder the exact posterior distribution of the hidderialdes
(32) to the expected value of the source vector under ourtianial distribution,n[w] (46), we see that in the variational
estimate the marginalizations ov@randc have effectively been takenside IL::,O[W] and decoupled over both frequency and
the sources, and the posterior distributid&:|X) and P(0[w]|c, X[w]) have been replaced by the variational distribution
posterior estimatege, (44) andyy, [ (45). Looking at the update rules fgfw]| andQ[w] (46,47), and comparing their form
to that of IL::,O[W] and 2;79[W] (30,31), we can see tha@[w] and ¢[w] can be viewed as the covariance and un-normalized
mean of a Gaussian that summarizes (a local region of) thesmector prior.

The maximum a posteriori estimate of the source vector ugder alson. Because the variational formulation is Gaussian
in Z and the true posterior is a mixture of Gaussians, valueg tifat minimize K’ will correspond to modes of the true
posterior. The variational update equations can therdferalternatively viewed as a directed form of gradient asoenthe
true posterior in a region local (in variational paramefggice) to the initialization of the variational parametd®scall that

in section IV-A.2 we showed that the exact computation ofneadocal MAP estimate will generally not be possible.
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V. AN APPLICATION EXAMPLE

In this section we step through an application example|ustilate the operation of the presented variational speegaration
algorithm. Our goal here is to convey a qualitative senseawf the algorithm works and the results it can produce. Furthe
results and related discussion are presented in sectiddéré we consider the problem of separating 3 far-field spseulces,

using only 2 (20 dB Gaussian noise corrupted) microphonergbtions.

A. Setup

Three subsets of the Wall Street Journal speech dataldB&C (0201-021G, 0301-031C, 0401-04}F§4B5C (0201-
021E, 0301-031G, 0401-041}466C (0201-021E, 0301-031F, 0401-04}Pgach consisting of approximately 12.5 minutes
of dictated speech sampled at 16 kHz, were normalized to armmmaverage power (the average power of each subset was
computed by excluding all 8 ms segments with average powewb& manually set silence threshold), and used to define the
underlying speech sources for the results presented héreindata of each speaker was then further partitioned irgetS
of size 50%, 25% and 25% to define training, validation, arstl tata sets, respectively.

To generate simulated microphone observations for thestestario, the underlying source signals were mixed absizty
TDOA values of|7, —7, 2] x 62.5us (which corresponds to source direction of arrivals (DOAS2® degrees, -22 degrees, and
6 degrees, respectively, for a 2 element microphone arnagrated by 0.4 meters, for example), and then corrupted B0
IID Gaussian noise, defined relative to the average poweheinderlying speech sources.

The source signals and resulting signal mixtures were tlagtitipned into 16 ms segments overlapped in time by 8 ms, and
the 256-point hanning-windowed FFT of all segments takdre U-4 kHz portion of the FFT of each segment was retained
(64 points) to define the frequency spectrum of the sourcdsn@nrophone observations for each processing frame. Rerfe
TDOA information was used to definfA[w]}, and full knowledge of the statistics of the corrupting rojgnone noise was
used to defind ¥[w]}, the conditional covariance of the noise in the observatiector { X [w]}. 2

Using knowledge of the separated source spectra, a 16 canp@MM model of speech in the magnitude spectral domain
was learned for each source independently via Expectatiaxivization (EM) [30], based on their respective trainimgss It
was experimentally found that the domain settiftg[w]} = {0 : = : 21=} produced contiguous, phase invariant probability
rings at all frequencies, for all speech classes, and atdpenodels, forX,. 4 [ defined by the isometric expansion of
cluster variance identified during training in the magné&uwtbmain. The resulting model of each speech source in ttatrape
domain is thus a mixture adf2%4 . 16 Gaussians. For all the results presented herein, the iom@htequations (44-47) where
updated according to the following schedule (which was eicglly found to work well) until parameter convergence : 1)
Update allvyy, [y, 2) Update all2[w], 3) Update ally.,, 4) Update alln[w], 5) Goto step 1). For each processing frame the
variational parametersy [, and x., where initialized randomlyp[w] was initialized by (49), and2[w]| was initialized as
a diagonal matrix with entriemax., 3., [w] (2 entries for each source), whe¥e [w] is the variance of speech class at
frequency binw, as identified during training in the magnitude spectral diom

2If the TDOAs are not known exactly and/or the mixtures cantaioustic echos, the source likelihood function defined Ayw]} will be noise corrupted:
the degree of noise corruption depending on how noisy the ABSQimates are, how much multi-path there is, and how marmyaphone observations there
are. In this paper, we focus on the problem of separatingydd|aadditive noise corrupted speech mixtures, where th©@ADof all underlying sources are
known.
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B. Performance Quantification

Here we will quantify the performance of the variational sgle separation algorithm in terms of the average SNR Gain in

decibels obtained over simply taking a microphone readmguw estimate of each of source:

25 l1Zs] = [Xmll?
25125 = 125,117

is the magnitude spectrum of the variational estimatéZaf, and

SNR Gain = 10logyg (49)

where|Z,| is the magnitude spectrum of sourgg|Z,,

| X | is the magnitude spectrum of microphome wherem is arbitrary. The metric is based upon the magnitude spettra
the underlying speech sources since the magnitude spe¢tum transform of it) is the standard input to the majority of
today’s state-of-the-art speech recognizers [1], [155).[2

We will also compare the separation results obtained byatiarial inference under our probabilistic speech separatiodel
to the following minimum norm constrained data inversiortted microphone observations, given the TDOA ensemble of all

sources:

Zine[w] = (A[w]T Aw] +0.11) A [w]" X[w], all w (50)

and denote the magnitude spectrum of the norm-constrastedage of source by |Z

Snecl*

C. Results

Figure 3 depicts a typical example of the separation resiitained for the three source, two microphone test scemaio
are considering here, for several iterations of variatigmference. In this situation, the separation problem idarnonstrained
by (at least) 2 dimensions at each frequency bin, and 128 rdilbes overall. We can see that the norm-constrained data
inversion based estimate of the magnitude spectra of therlyily sources is highly corrupted by cross-talk.

As variational inference proceeds, frequency correlaitidormation in the source priors steers the source estsratgard
likely spectral configurations of speech, and at each frequenformation in the mixing layer of the model coupleserénce
across the sources. The result is that the algorithm is aatioafly able to detect and filter out source crosstalk, ditidir’
unreliable, noise corrupted regions of the frequency spettAfter 14 iterations of variational inference, the agting noise
and source cross-talk have been almost completely remgisdding good quality estimates of the magnitude spectrdirallo
sources.

Figure 4 depicts plots of the source vector gain and Kullbagibler divergencek” of the joint distributionP from the
surrogate distributior®) as a function of the number of iterations of variational iefece. We can see that in this case, both
K’ and the source vector gain of the variational estimate lstabafter about 14 iterationd<’ is the cost function we are
minimizing to identify @, and because the minimization is (variational parameterlignt based, is a hon-increasing function
of the number iterations of inference. The stabilizationfgfcan thus be used as a criterion for terminating inference.

Over the entire test set, a 12.5 dB SNR gain over taking a mimpe observation as each source estimate (6.8 dB for
norm-constrained data inversion) was achieved via oumltiarial speech separation algorithm. Because we are dpeerh

separation in the full spectral domain, the algorithm isomadtically able to recover estimates of the spectral phésdl o
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Fig. 3. Plots of the magnitude spectra of underlying souli@s versus their variational estimaté&s, |, for several iterations of variational
inference; for a case where there are 3 underlying sourcexrty 2 observed signal mixtures (microphone observajioeach corrupted

by 20 dB IID Gaussian noise. Here = {7, —7,2} % 62.5us. The norm-constrained estimatt%sm| (derived from equation (50)), have
also been included in the plots for comparative purposes.

underlying sources, facilitating the direct transforroatiof the obtained source estimates into the time domairrrml
listening tests reveal that there is minimal cross-talkhia directly transformed time-domain source signal estsiaand that
satisfactory estimates of the spectral phase of the uridgrspurces have been recovered, as the resulting sigmnaléss are
of high perceptual quality.

For the (dimensionally small) speech separation scenadoave considering here, exact inference is on the order of
W ~ 10° times more computationally more expensive than an iteratib variational inference. For this test
scenario, 15 iterations of variational inference (per pesing frame) were required on average, over the test se¢ath
estimate convergence. One iteration of variational infeeetakes approximately 1 second to execute on a 2.2 GHzupenti
machine running Matlab (version 6.1) code. For this teshate then, variational inference on a single frame of pssitg

data (16ms) takes about 15 seconds on average, while exfactrine is estimated to take on the orderl6f seconds, or

approximately30 hours per 16 ms processing frame.
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TABLE |
AVERAGE SNRGAIN (49) PERFORMANCE OF THE VARIATIONAL ALGORITHM, AS A FUNCTION OF THE NUMBER OF SOURCESTHE NUMBER OF
MICROPHONES AND THE NOISE LEVEL. PERFORMANCE RESULTS FOR THINC ESTIMATE (50) ARE INCLUDED IN BRACKETS. THE (SIMULATED)
POSITION ENSEMBLES OF THE SPEAKERS AND MICROPHONES ARE = {[3.451, 3], [—3.451, 3], [0.666, 3], [—1.026, 3]} AND
pm = {[0,0.1], [0, —0.1], [0,0.3], [0, —0.3], [0, 0.5], [0, —0.5], [0, 0.7], [0, —0.7] }, RESPECTIVELY.

Num.  Num. Microphone Noise Level
Sources Mics. 20 dB 10 dB 0 dB
2 2 24.9 (14.5) 20.8 (13.2) 12.0(5.8)
3 2 25.2 (14.1) 19.7 (13.1) 12.9 (8.2)
3 2 11.3(7.8) 10.8 (7.8) 7.6 (7.1)
4 2 9.5 (8.0) 9.2 (8.0) 8.3 (8.0)
2 4 28.9 (20.9) 22.8(16.8) 12.8(9.1)
2 8 16.9 (12.3) 16.9 (12.3) 17.5(12.6)

VI. RESULTS ANDDISCUSSION

Table | summarizes the source vector gain performance ofvariational algorithm for the case of as many sources as
microphones, mores sources than microphones, and morephimmnes than sources, for several test scenarios: wheteghe
setup, utilized source models, and reported gain measaresath scenario are as defined in section V. One additioreis th
definition of a fourth source, whose data set was construfcoed the segment$46AC (0201-021G,0301-031D,0401-041D)
of the WSJ database. The source vector gains achieved wetheconstrained inversion estimate (50) have also beduadad
in the tables, in brackets, for comparative purposes.

A discussion of the results within the context of existingrkvon separating delayed, noisy speech mixtures for the afise
as many sources as microphones, more sources than micexterd more microphones than sources follows. Because the
simultaneous incorporation of detailed models of speechsurce time-delay ensemble information under a TDOAdbase
problem formulation is a novel approach to the speech st@parproblem, it is difficult to directly compare the obtathe
results to those reported in previous work. As such, we véldbigent in pointing out differences in the assumptionsieby
the algorithms being compared. One important point of nethat the source models utilized in obtaining the reporésdlts
are source specific 16 GMM models. In further experimentejdver, results of indistinguishable fidelity were achiewsthg
a 64 GMM speaker-independent model trained on a WSJ segroanisting of 6 speakers.

1) Equal Number of Sources and Microphond®r the case of square mixing we will compare the performaricine
variational algorithm to two state-of-the-art approacfeesthe separation of delayed, noisy speech mixtures; oaeutiizes

advanced probability modelling techniques to incorposgieech models into the estimation process as we have doege her
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and one that uses only TDOA information to perform speeclarsgion.

In [17], Attias develops a speech separation algorithm dag®n the utilization of zero-mean GMM-based represeoriati
of the underlying speakers, and a fully unconstrained rgixiratrix, which is learned. For the case of 5 sources, 5 miwops,
and 10 dB additive Gaussian noise corruption, Attias a@siey source vector gain over using a microphone reading as the
estimate of each source of only 3.7 dB. For 3 microphones asdu®ces, he obtains a gain of only 4.4 dB. Results for the
case of 2 sources and 2 microphone though not presented,ecaafély assumed to lie near these results. Our variational
algorithm, conversely, for the square mixing scenarioteteat 10 dB noise corruption, achieves average sourcervgaios
of approximately 20 dB: over 7 dB higher than the result ai#diusing via horm-constrained data inversion, and overBL5 d
higher than the results obtained by Attias. The large dgamey in the obtained results is to be expected. Attias’srdign
is blind, and therefore the learned source densities wiitaio cross-talk, the level of noise corruption is indetierant, and
the mixing matrix estimation is both corrupted by sourceestiecision errors, and determinable only up to an arbitsaafe.

By performing separation based on phase diversity, we deetalovercome all of these difficulties by utilizing infortian
that can be reasonably assumed to be available.

In [4], [35], Aarabi and Shi present dynamic phase erroebgsunishment schemes for TDOA-based speech enhancement.
These methods can also be applied to the separation of speentes. For the case of two time-delayed sources with cammo
power, source vector gains of approximately 10 dB have bdgaired. In contrast to our algorithm, these approaches do
not incorporate prior information about the nature of speido the estimation process, and estimate each speechesour
independently.

2) More Sources than Microphones$n the case of underdetermined mixing, no algorithm in ditere that performs the
separation of delayed, noisy sources could be identifiedceMy@nerally, there is relatively little published litare¢ on the
problem of source separation when there are more sourcesrthdures. Several approaches have been developed, howeve
for the case of both instantaneous mixing of independentssuand assumed approximate or exact knowledge of thegnixi
matrix. Here we will discuss the results obtained by two @& thost successful approaches we identified in current titexa

In [47], Vielva and Principe present an interesting aldoritfor underdetermined source separation using knowletigeeo
mixing matrix, which operates essentially by classifyiagle underlying source as active or inactive, and then parfay direct
or minimum norm regularized inversion based on the clasdifin. At a source sparsity factor of 12.5%, which corresison
to three independent sources that are active 50% of the timénflependently dictated speech would be) the algorithen wa
able to improve on minimum-norm based pseudo-inversionelsg than 1 dB for the case of 3 sources, 2 observations and
zero noise. At 70% and 90% source sparsity and 3 sources, @rolxservations and zero noise, gains over pseudo-inmersio
of over 4 dB and 10 dB were obtained.

Our variational algorithm, in contrast, achieves gains afB3over norm-constrained inversion with 10 dB and 20 dB noise
corruption at a source sparsity of 12.5%. Vielva and Prigsipvork, does show, however, that when the sources are very
sparse (as is often the case in conversational speechgjtgdaran important separation queue. The incorporatiospairsity
constraints into the source separation framework preddrmee is avenue of research we are currently pursuing.

In [48] Te-Won Lee et. al. develop a blind, probabilistic I&ased approach to underdetermined speech separatiantimgh
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domain. Results for the separation of three speech sousieg two mixed observations are reported iftstantaneously mixed
speech and various levels of Gaussian observation noisaptian. For 10 dB observation noise corruption post-pssed
SNRs of approximately 8.5 dB are reported, where post-jging includes application of the algorithm aredative scale
correction Our variational algorithm in contrast yielded an averagRSat 10 dB noise corruption of 9.5 dB with no scale
correction post-processing.

3) More Microphones than SourceBor the overdetermined source separation of time delaygrtlires corrupted by additive
noise, knowledge of the TDOA ensembles is very strong in&iom. The variational algorithm nevertheless obtainsiltes
that are on average about 5 dB higher than those obtainedwua-constrained inversion. Because TDOA information ishsu
a strong constraint when there are more microphones tharwesoand only additive noise, it is not worthwhile to compare
the results of algorithms that do not use TDOA informatioho3e algorithms that do use TDOA information, as previously
discussed, estimate the configuration of each source indepdy, and do not utilize prior information about the nmatof

speech.

VIl. CLOSING REMARKS

In this paper, a new variational inference algorithm for tinmlicrophone probabilistic speech separation was ptesen

For the problem of separating delayed, additive noise poedispeech mixtures, the algorithm is able to improve upon
the SNR gain performance of existing state-of-the-art gbilistic and TDOA-based speech separation algorithmsvey &0
dB. This significant performance improvement is obtaineccbsbining TDOA information with prior information abouteh
nature of speech, under a novel probabilistic descriptfotm® speech production and mixing process. The method ialdap
of recovering high quality estimates of the underlying sfregources under these conditions, even when themnaresources
than microphone observations.

An important direction of future work is the extension of theesented framework to the more general scenario of only

noisy or partially available source TDOA information, arignificant non-stationary acoustic multi-path.
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