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Abstract

Separating multiple speech sources using alimited number of noisy sensor measurements presents a difficult problem, but

one that is of great practical interest. Although previously introduced source separation methods (such as ICA) can be made to

work in many situations, most of these methods fail when the sensors are very noisy or when the number of sources exceeds

the number of sensors. Our approach to this problem is to combine the multiple sensor likelihoods (obtained using time-delay of

arrival, TDOA, information) with a generative probabilitymodel of the sources. This model accounts for the power spectrum of

each source using a mixture model, and accounts for the phaseof each source using one discretized hidden phase variable for

each frequency.

Source separation is achieved by identifying the source vector configuration of maximuma posteriori probability, given

all available information. An exhaustive search for the MAPconfiguration is computationally intractable, but we present an

efficient variational technique that performs approximateprobabilistic inference. For the problem of separating delayed, additive

noise corrupted speech mixtures, the algorithm is able to improve upon the SNR gain performance of existing state-of-the-art

probabilistic and TDOA-based speech separation algorithms by over 10 dB. This significant performance improvement is obtained

by combining the information utilized by these approaches intelligently under a representative probabilistic description of the

speech production and mixing process. The method is capableof recovering high fidelity estimates of the underlying speech

sources even when there aremoresources than microphone observations.

Index Terms

Robust speech recognition, speech separation, microphonearrays, probabilistic graphical models, approximate inference,

variational methods, phase-based speech processing.

I. I NTRODUCTION

In recent years, robust speech recognition has been a highlyactive area of research [1], [2], [3], [4]. This area has been

motivated by compelling applications (i.e. improved human-computer interaction in cars and personal digital assistants), and

complicated by problems such as secondary speech sources and noise sources, as well as reverberations.

Matched training is an effective approach when the noise conditions in deployment can be well characterized, but is not

well suited for situations where the acoustic scene is unpredictable and/or is comprised of multiple speech sources. Insuch

situations, one viable approach is to attempt to separate out the target signal(s) of interest from all masking sources at the

front-end, treating the problem of robust speech recognition as a source separation problem [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14], [15], [16], [17]. The target recognition engine can then optionally be matched trained or adapted based on the

output target signal estimate(s) [18], [19].

In the past 10 years, most of the research on source separation has been focused on blind approaches, and independent

component analysis (ICA) techniques in particular; where source estimates are obtained based on the assumption of statistical
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independence, using a set of mixed observables [5], [6], [7], [8], [9]. Unfortunately, most existing source separationtechniques

are not applicable to important practical classes of the robust speech recognition problem. Few techniques are robust to

significant noise corruption (c.f. [15], [16] for techniques addressing severe noise), fewer still can be applied to delayed

mixtures [9], [13], [14], and fewer yet are robust to substantial reverberation [14].

Several spatio-temporal ICA algorithms for separating convolutional mixtures have been developed [10], [17], [20], [21],

[22], but these algorithms are not generally applicable either. In practical settings, the time-delayed, convolutional relationship

between the underlying sources and the microphones is so sensitive to source position and orientation that it is not learnable in

a straightforward fashion [23], [24]. All blind ICA algorithms are limited to the recovery of source estimates that are arbitrarily

permuted and scaled. The latter is a serious limitation in the context of robust speech recognition in natural environments.

One direction of significant progress in the last few years has been the development of probability models for speech

separation, which incorporate detailed prior informationabout the speech signal into the estimation process. Various formulations

have been developed and good separation results have been demonstrated under certain conditions [2], [15], [25], [26].Integral

to progress in this research area has been the development and utilization of new context-dependent techniques for approximate

inference [27], [28], [29], [30], [31]. These methods provide approximate, but tractable solutions to inference in representative

probability models where exact inference requires an exponential amount of time. As such, they have facilitated the utilization

of more representative models of speech production and mixing for speech separation.

Another direction of significant progress has been the development of time-delay-of-arrival (TDOA)-based speech separation

systems. These systems use multiple, different propagation delays to separate sources in a spatially selective way. While the

majority of existing approaches utilize only the TDOA (position information) of a single source of interest, recent advances in

sound localization [32], [33], [34] now allow for the simultaneous estimation of the TDOAs of multiple speech sources. The

few multi-source TDOA-based speech separation algorithmsthat have been developed since lie among the state-of-the-art in

the separation of mixtures of delayed sources that are corrupted by additive noise and/or reverberations [4], [14], [35]. None

of these methods utilize prior information about the natureof speech. Given that the source-to-observation transfer function

in reverberative environments is highly dynamic and so willgenerally be difficult to learn, spatially selective algorithms for

speech separation offer an attractive and promising alternative to dealing with reverberation.

In this paper, we combine techniques from the probabilisticand TDOA-based speech separation research communities,

and present a new variational probabilistic inference algorithm for the separation of multiple speech sources using asinput

delayed, noisy speech mixtures and a speech model. The algorithm is based upon a new generative probability model of

speech production and mixing in the full (complex) spectraldomain, that identifies the TDOAs of the sources as a natural,

low-dimensional parameterization of the mixing process, and maps learned gaussian mixture models (GMMs) of speech in

the magnitude spectral domain onto the complex plane. This is done in a way that facilitates the derivation of an efficient

inference algorithm, that islinear rather than exponential in the complexity of the source model.

For the problem of separating mixtures of delayed sources corrupted by additive noise, the algorithm is able to improve

upon the SNR gain of existing state-of-the-art probabilistic and TDOA-based speech separation algorithms by over 10 dB.

Interestingly, our method is capable of recovering high fidelity estimates of the underlying speech sources even when there
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aremoresources than microphones.

This paper is organized as follows. In section II, a new formulation of the mixing process is presented, and source inference

under this model of mixing (when little or no prior information about the sources is available) is considered. In sectionIII, we

extend this with a probability model of speech production and mixing. In section IV, inference in this model is discussedin

detail. Exact inference in the model is shown to be intractable, and a new variational algorithm to enable efficient approximate

inference is presented. In section V, we illustrate the operation of the derived variational algorithm for the case of 3 sources

and 2 observed (delayed, noisy) speech mixtures. In sectionVI, further results are presented and compared to existing work.

II. TDOA-BASED SPEECHSEPARATION

In the ideal situation of negligible microphone noise and environmental acoustic reflection (reverberation), themth mi-

crophone of anM -element microphone array receives a scaled, time-delayedcombination of all underlying sound source

signals:

xm(t) =

S
∑

s=1

αm,szs(t − τ ′
m,s) (1)

whereαm,s andτ ′
m,s are the intensity decay and time delay associated with the propagation of source signalzs to microphone

m.

When the microphone array elements are sufficiently proximal, the propagation intensity decayαm,s is approximately

independent ofm. When all underlying sound sources are sufficiently far awayfrom the microphone array,αm,s is also

approximately independent of the source indexs. 1 Equation(1) then simplifies to:

xm(t) =

S
∑

s=1

αzs(t − τ ′
m,s) (2)

Whenα is not independent ofs as assumed, the absolute scale of the sources cannot be recovered without additional information,

as will be discussed further shortly.

The propagation delay of a given source at each microphone may be further decomposed into a common delay, and a delay

relative to a chosen reference microphone:

τ ′
m,s = τmref ,s + τm,s (3)

τm,s is known as the time-difference-of-arrival (TDOA) of source s at microphonem, relative to the chosen reference

microphone. From here on in we will absorbτmref ,s into our definition of the speech sources.

An equivalent representation of the relation (2) in the frequency domain is given by:

Xm[w] =

S
∑

s=1

αe−jωτm,sZs[w] (4)

1In typical settings of practical interest (e.g. home or office settings),α is (for all practical purposes) independent ofs when all of the sources are more
than one meter away from the microphone array [34].
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whereZs[w] is theN -point Discrete Fourier Transform (DFT) of thesth (sampled) sound source signal at center frequency

ω = w
N ωs:

Zs[w] =
N−1
∑

n=0

zs(nTs)h[n]e−j 2πw
N

n, w = 0, 1, · · · , N − 1 (5)

andXm[w] is similarly defined. Hereh[n] is a (generally non-rectangular) windowing function, andωs = 2π/Ts is the sampling

rate, in radians per second.

Note that for finite block lengthN the relation (4) is only approximate due to windowing effects (spectral blurring), and any

non-stationarity in the source signalszs(t) over maxm τm,s. For typical speech analysis windows (10- 100 ms), and typical

values ofτm,s for a proximal set of microphones (τm,s < 3x ms for anx meter linear array of microphones, for example),

however, the error in the relation (4) is negligible.

The relation (4) can be expressed in cartesian form as:

Xm[w] =

S
∑

s=1

Am,s[w]Zs[w] (6)

where:

Am,s[w] = α


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

or:

X[w] = A[w]Z[w] (7)

whereA[w] = (Am,s[w]), Z[w] is a 2S-dimensional vector, formed by stacking the vectorsZs[w] over all S, andX[w] is

similarly defined.

Given the time delay ensemble{τm,s} then, we have for each segment, a system ofreal, linear equations constraining the

underlying source signal spectra. Note that whenα not independent ofs as assumed the only consequence is that the constraints

for each source in (7) are scaled byαs/α, over all frequency. The formulation is otherwise entirelyphase-based, and therefore

scaled estimates of the sources of uncompromised quality can be recovered using (7) whenα is not independent ofs. In

contrast with blind intensity-based source separation techniques, this formulation is well suited for situations where there are

far-field sources, and the relative scale of the sources can always be recovered. When (7) is combined with probabilisticprior

information about the sources, scale variationsαs/α outside the inherent variability of the sources can be compensated for by
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using multi-condition trained models, or by explicitly inferring the model scales during source inference.

In practical environments, however, the microphones recordingsxm(t) will generally be corrupted by transduction noise,

acoustic multi-path, and secondary (unmodelled) sound sources. Let thenet noise corruption at microphone recordingm at

time t be denoted bynm(t). Microphone recordingxm(t) can then be expressed as:

xm(t) =

S
∑

s=1

αzs(t − τ ′
m,s) + nm(t) (8)

Considering all microphone recordings simultaneously, and moving into the spectral domain, then, we obtain:

X[w] = A[w]Z[w] + N[w] (9)

whereN[w] is defined analogously toX[w] andZ[w] in terms of{nm(t)}. We now consider the problem of estimating the

source vectors{Z[w]}, based on TDOA information alone (via{A[w]}), given noise corrupted source mixtures (microphone

recordings). The discussion is intended to serve as a foundation, and motivation for the development of a new generative

probability model of speech production and mixing for speech separation, which will be presented in the section III.

In special case of an equal number of sound sources and microphone observations, given the mixing matrixA[w] and the

microphone observation vectorX[w] we generally expect to be able to recover an estimate of the source vectorZ[w] via direct

inversion:

Ẑ[w] = A[w]−1X[w]

= Z[w] + A[w]−1N[w] (10)

The termA[w]−1N[w] is the error in the source vector estimateẐ[w] due to noise, and will be large whenN[w] is large

and/orA[w]−1 has large entries.

In the case of two sources and two microphones the determinant of A[w] is given by:

detA[w] = 2α4{1 − cos(ω(τ2,1 − τ2,2))} (11)

which means thatA[w] is not invertible whenω(τ2,1 − τ2,2) = 2πk, k an integer. This occurs when the TDOAs of both

sources are equal, and more commonly when signals arriving from each source at a given frequencyω have a common phase

difference at the microphone observation points, thus becoming indistinguishable:

ω(τ2,1 − τ2,2) = 2πk <=> ωτ2,1 = ωτ2,2 + 2πk (12)

Similarly, for squareA[w] of arbitrary dimension invertibility is lost when:

S
∑

s=1

asexp(−jωτ s) +

S
∑

s=1

jbsexp(−jωτ s) = 0 (13)

for a non-trivial set of real constants{as, bs}. Hereτ s is the TDOA ensemble of sources in vectored form (τ s = [τ1,s, τ2,s, · · · , τM,s]
T ),

and theexp operator represents element-wise exponentiation. Equation (13) is satisfied non-trivially if and only if the columns
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(rows) of A[w] are linearly dependent. ForM > 2 a given source TDOA ensemble corresponds to a unique position in 2-D

space, so generallyA[w] will not lose invertibility at all frequencies. The determinant ofA[w] is continuously differentiable

function of ω. Therefore we expect that the noise corruption inẐ[w], even whenA[w] is invertible, will be severe in the

immediate region of singularities inA[w].

When there are more microphones than sources the least-squares estimate:

Ẑ[w] = (A[w]T A[w])−1A[w]T X[w] (14)

can be applied to obtain an estimate of the source vector at frequencies whereA[w]T A[w] is invertible. The solution (14),

when it exists, minimizes the objective function:

J [w] = ||A[w]Z[w] − X[w]||2 (15)

The least squares solution is considered the best linearunbiasedestimator of the source vector given the microphone observations

andA[w], as(A[w]T A[w])−1A[w]T has the smallest squared sum over its elements of any left inverse forA[w]. This property

is desirable because it means that(A[w]T A[w])−1A[w]T is the matrix inverse that amplifies additive zero mean observation

noise which is uniform over the observation vector the least. In general however,A[w]TA[w] may not be invertible, and/or we

may want to bias the estimation ofZ[w] based other known information to improve upon the estimate.When there are more

sources than microphones, for example, the inversion of relationship (7) is under-constrained by (at least)2S−2M dimensions

at all frequencies.

Estimation of the source vector whenA[w] andA[w]T A[w] are not invertible and reduction in the level of noise corruption

whendetA[w] (for the case of square mixing) is small can be accomplished by introducing additional constraints thatregularize

the estimation towards solutions that are expected or reasonable given what is known about the problem.

The complexity of regularization schemes vary from the artificially simple to the enormously complex. In many cases very

little or no prior information about the nature of the entitybeing estimated is available, and we must resort to very simple (but

nevertheless very useful) regularization schemes.

Perhaps the most common form of regularization applied to arbitrary linear systems where little prior information is available

is to modify the objective function (15) to include a term that constrains a norm or ”energy measure” of the solution vector;

the idea being to discriminate against estimates out of plausible range. In particular, high energy source estimates that are

the result of noise put through high gain inverse transformations are discriminated against, and in the case of degenerate or

insufficient constraints, data inversion is facilitated, as we shall see in a moment.

Augmenting the objective function (15) to constrain the squared (L2) norm of the solution vector we have:

J ′[w] = ||A[w]Z[w] − X[w]||2 + µ[w]||Z[w]||2 (16)

whereµ[w] is a free parameter that can be tuned to adjust the relative importance of the two constraints.
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Minimizing J ′[w] with respect toZ[w] we obtain:

Ẑnc[w] = (A[w]T A[w] + µ[w]I)−1A[w]T X[w] (17)

Here we can see that the introduction of a constraint on the norm of the source vectorZ[w] results in an additional additive

term µ[w]I in the data inversion. For non-zeroµ[w] the (A[w]T A[w] + µ[w]I) term is guaranteed to be full rank, and so the

estimate forZ[w] can always be obtained: regardless of the dimension ofA[w]. For a given situation, the value ofµ[w] can

be set optimally based on estimation results on validation data. Note that (17) can alternatively be derived as the maximum

a posteriori (MAP) estimate ofZ[w] under the assumption that the prior distributions forN[w] and Z[w] are zero-mean,

independent, isotropic Gaussians, with variance ratioµ[w].

The minimum norm constrained least squares solution has definite utility in situations where only vague information about

the strength of the signal and/or noise corruption is available, but is limited by its simplicity. A number of other regularization

approaches for situations where limited context information is available have been developed [30], [36]. In situations where

detailed information about the nature of the underlying source signals is known, this information can and should be incorporated

into the estimation process. In the next section we develop agenerative probabilistic model of speech production and mixing,

built upon the utilization of the ensembleA[w], to facilitate the incorporation of detailed information about the underlying

sources and the environment into the estimation of the underlying source vector.

III. TDOA-B ASED PROBABILISTIC SPEECHSEPARATION

In the previous section we saw that the acoustic source separation problem can be described in the frequency domain by

the relation:

X[w] = A[w](τ , α)Z[w] + N[w] (18)

at each frequency, whereA[w] is as defined previously and is a function of the source propagation intensity decayα, and

the TDOA ensembles of the acoustic sourcesτ = {τ 1, τ 2, · · · τS}. This is a ’hard’ description of the problem, that describes

how the microphone observations at each frequency may be generated, given the precise values ofZ[w], N[w], α, andτ .

Let Z = [Z[0]T ,Z[1]T , · · · ,Z[N − 1]T ]T , and letX and N be similarly defined. In general,Z, N, α, and τ will not

be known or observed, and therefore represent underlying ’hidden’ random variables of the mixing process, that must be

simultaneously inferred to recover estimates of the spectra of the underlying acoustic sources. Inference of these variables

should ideally be based not only upon the observed microphone observations and the utilization of the relationship (18), but

also incorporate all we know about the current state, general characteristics, and inter-dependencies between these variables

into the estimation process.

In this section we develop a generative probability model ofspeech production and mixing to facilitate the intelligent

utilization of information about the nature of speech and the current application context during speech source estimation. Here

we concentrate on the development of a model for the situation where all explicitly modelled acoustic sources are speech

sources. It must be emphasized, however, that in situationswhere it is desirable to explicitly model other types of acoustic
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sources, gaussian mixture models (GMMs) for these sources can seamlessly be substituted into the model and utilized during

source inference, as the speech model we will develop and utilize is a GMM.

A. Modelling the Speech Sources

Let Zs = [Zs[0]T ,Zs[2]T , · · · ,Zs[N − 1]T ]T . Here Zs is simply theN -point DFT of sources, in cartesian, vectored

form. Note thatZ may be formed by interleaving the vectorsZs (Recall thatZ = [Z[0]T ,Z[1]T , · · · ,Z[N − 1]T ]T and

Z[w] = [(Z1[w]T ,Z2[w]T · · ·ZS [w]T ]T ).

In general we expect that the underlying prior distributionof Z (prior to observing the microphone array data) will be coupled

overs, and potentially dependent on the position ensemble of the sources (people in a common conversation do not generally

speak simultaneously and are often located proximally, forexample), but here we will assume that the prior distribution over

Z factors overs, and is independent ofτ andα:

P (Z) =
∏

s

P (Zs) (19)

The magnitude spectrum of speech (or a transform of it), is established as an excellent feature space for characterizingdifferent

speech sounds [1], [37], and signal-level models of speech in the magnitude spectral domain have been widely applied to speech

separation problems [15], [25].

When doing speech separation based on multiple microphone recordings in the frequency domain, however, the mixing

process has both amplitude and phase components, and so to incorporate prior information about the nature of speech, it is

essential to move to the full spectral domain, so that both amplitude and phase corruption can be filtered. Here the fidelity

of the recovered spectral magnitude and phase estimates will be coupled for each source, and across sources: therefore even

in cases where we are interested only in recovering the magnitude spectrum of a given speaker (for input to a magnitude

spectrum-based machine recognition system, for example) phase representation during source inference is critical.

Although it is well known that the spectral phase of speech isgenerally coupled across frequency and time (e.g. for voiced

speech), this knowledge is difficult to utilize in practice,as these dependencies are a function of the unknown state of the

vocal chords and vocal tract, and are obscured by frequency sampling and signal windowing [1].

Here we pursue the development of a probability model of speech in the full spectral domain that incorporates detailed

information about the nature of speech (as characterized inthe magnitude spectral domain), and is phase-invariant. Under

this model the equi-probable surfaces of the probability distribution of a given class of speech in the frequency domainare

postulated as rings in the complex plane at each frequency, where the radial mode of the speech class will vary in intensity

over frequency, corresponding to the prototypical configuration of the magnitude spectrum of the speech sound (see Figure 1).

The current standard signal-level model for speech in the full spectral domain is a mixture of zero-mean Gaussians [38],

[39]. This model is attractive in the sense that phase-invariance is trivially achieved, but undesirably ties the representation of

the mean and variability of the underlying speech classes.

Here we will represent speech in the full spectral domain by learning a (diagonal-covariance) GMM representation of

speech in the magnitude spectral domain, and then rotating the learned model (at discrete, regular intervals, introducing phase
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Fig. 1. We represent speech in the full spectral domain by learning a (diagonal-covariance) GMM representation of speech in the magnitude spectral domain,
and then rotating the learned model (at discrete, regular intervals, introducing phase covariance proportional to thechosen interval size) at each frequency,
about the origin of the complex plane. The result is a GMM model of speech in the full spectral domain that incorporates detailed information about the
nature of speech (as characterized in the magnitude spectral domain), and is approximately phase-invariant as desired.

covariance proportional to the chosen interval size) at each frequency, about the origin of the complex plane. The result is a

GMM model of speech that is approximately phase invariant, given by:

P (Zs) =
∑

cs

P (cs)
∏

w

∑

θs[w]

P (θs[w])P (Zs[w]|cs, θs[w]) (20)

P (cs) = πcs
, P (θs[w]) =

1

ℵθs[w]

P (Zs[w]|cs, θs[w]) = N (Zs[w]; µcs,θs[w],Σcs,θs[w])

µcs,θs[w] = Rθs[w]µcs,θs[w]=0

Σcs,θs[w] = Rθs[w]Σcs,θs[w]=0R
T
θs[w]

Note that the notationP () here has been used to denote both probability and probability density functions: a convention that

we will follow for the remainder of the paper, in the interestof facilitating general discussions on probabilistic inference,

and improved aesthetics. The notationN (y;a,B) here and for the remainder of the paper will be used to denote aGaussian

probability density function (PDF) over the random vectory with meana and covariance matrixB. The notationℵv here and

from this point forward will be used to denote the total number of possible configurations of the random variablev.

In (20), cs is the Gaussian mixture index of a speech class identified during training in the magnitude spectral domain

(the indice is speaker dependent, the associated conditional distribution may or may not be), andθs[w] is a discrete random

variable that effectively represents the ’coarse phase’ ofthe speech sound at frequencyw. θs[w] is assigned a uniform prior

distribution so that the marginal priorP (Zs[w]|cs) will be approximately phase invariant. Figure 1 illustrates how the resulting
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GMM models of speech in the spectral domain at each frequency, for a given speech class, are approximately phase invariant

as desired. Hereµcs,θs[w]=0 and Σcs,θs[w]=0 are the mean and diagonal covariance of the conditionally gaussian PDF over

Zs[w] defined bycs andθs[w] = 0. µcs,θs[w]=0 has first (real) component equal to the mean of speech classcs at frequency

w as identified during training in the magnitude spectral domain, and second (imaginary) component zero.Σcs,θs[w]=0 is a

diagonal matrix with first diagonal entry equal to the variance of speech classcs at frequencyw as identified during training

in the magnitude spectral domain, and second diagonal entrysuitably chosen in accordance with the granularity ofθs[w] to

achieve phase invariance. HereRθs[w] is a deterministic rotation matrix.

Our approach facilitates the direct mapping of GMMs of speech learned in the magnitude spectral domain into corresponding

phase-invariant GMM models of speech in the full spectral domain. Note that when the input GMM model learned in the

magnitude spectral domain is zero-mean, the phase variables θs[w] become redundant and representation reduces to the

standard model [38], [39]. Our model can therefore be thought of as a generalization of the standard model, that facilitates the

independent representation of the mean and the variabilityof the magnitude spectrum of speech sounds (or optionally other

acoustic phenomena), in the full spectral domain.

An important feature of our model of speech in the full spectral domain is that it is a GMM (as opposed to a non-linear

transformation of a GMM). The utilization of this source model in combination with the conditionally linear formulation of

mixing presented in section II, then, will allow us to construct a probabilistic description of speech production and mixing

that is conditionally Gaussian. It is this property of our formulation that, by design, facilitates the development of the analytic

inference algorithms presented in section IV.

B. Modelling Propagation Decay

In general the intensity decay ensemble associated with thepropagation of the source signals to an array of proximal

microphones will be a function of the positions of the speakers relative to the microphones. In far field conditions these

dependencies dissolve and the propagation intensity decayis well approximated as common across all sources and microphones.

For a given environment this scaling can be calibrated, and the uncertainty associated with this estimate can be quantified by

a probability distribution for the propagation scale basedon the calibration.

Here we will assume that the propagation decay constantα is precisely known:

P (α) = δ(α − α′) (21)

The performance impact of assuming an incorrect propagation scale value for one or more of the sources was discussed in

detail in section II.
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C. Modelling the Source TDOA Ensembles

The TDOA associated with a given source-microphone pair (defined relative to a chosen reference microphone) is a

deterministic function of the position of the source relative to the (chosen and reference) microphones:

P (τs,m|ρs, ρm, ρmref
) = δ(τs,m − f(ρs, ρm, ρmref

))

(22)

whereρs = [ρsx
, ρsy

, ρsz
]T is the position of sources, andρm andρmref

are similarly defined. The deterministic mapping

function f(ρs, ρm, ρmref
) is given by:

f(ρs, ρm, ρmref
) =

|ρs − ρm| − |ρs − ρmref
|

ν
(23)

whereν is the speed of sound in air (generally taken as 345 m/s in indoor environments).

In general, the positions of the underlying sources will notbe known, and will have be estimated by a sound localization

engine [40], [32], [33], [34], [41]. Sound localization systems capable of estimating the coordinates of multiple speakers in

real environments exist, and have demonstrated localization accuracy on the order of 10 cm under very general conditions [33],

[34]. In this paper, we focus on the development of a speech separation algorithm that utilizes point estimates of the positions

of the underlying sources to perform speech separation, as was done in [4], [13], [14], [35], [42]:

P (τm,s) =

∫

ρ′

s

P (ρ′
s)δ(τm,s − f(ρ′

s, ρm, ρmref
))dρ′

s

= δ(τm,s − f(ρs, ρm, ρmref
)) (24)

D. Modelling Microphone Noise Corruption

The noise corruption at the microphone array will generallyconsist of unmodelled sound sources, transduction noise, and

non-stationary multi-path from all underlying sources. Here we will represent all noise corruption as zero mean and second

order. Note, however, that when localized noise sources arepresent, they can be optionally be modelled explicitly: endowed with

GMM priors in the full spectral domain, and seamlessly treated as ’speech sources’ to be inferred during source inference. The

conditional probability of the microphone observations given the source vectorZ, the propagation scaleα, and the collective

TDOA ensembleτ , is then given by:

P (X|Z, α, τ ) =
∏

w

P (X[w]|Z[w], α, τ )

=
∏

w

N (X[w];A[w]Z[w],Ψ[w]) (25)

whereΨ[w] is the covariance of the microphone noise corruption at frequencyw. This is simply a probabilistic form of the

deterministic relationship between the hidden variables and the microphone observations developed in section II.
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Fig. 2. A Bayes Net depicting the dependencies that exist between random variables of the speech production and mixing process.

E. A Generative Probability Model of Speech Production and Mixing

The overall generative probability model of the speech production and mixing process is given by:

P (X,Z, c, θ) =
∏

w

P (X[w]|Z[w], α, τ )·

∏

s

P (cs)
∏

w

P (θs[w])P (Zs[w]|cs, θs[w])

=
∏

w

N (X[w];A[w]Z[w],Ψ[w])·

∏

s

πcs

∏

w

1

ℵθs[w]
N (Zs[w]; µcs,θs[w],Σcs,θs[w])

Wherec represents the speech class ensemble{c1, c2, · · · cS}, andθ represents the spectral phase ensemble{θ1, θ2, · · · , θS},

whereθs = {θs[0], θs[1], θs[N − 1]}. Here we have omitted variables whose values are precisely known or are extraneous to

the representation of the mixing process, given their distribution.

Under this probabilistic description, microphone observations are generated as follows:

• A speech sound is emitted from each speakers with probabilityp(cs) = πcs
.

• The coarse phase of each speaker, at each frequency, is uniformly generated from the domain ofθs[w].

• Given cs and θs, and instance of the speech sound is generated from the conditional distribution P (Zs|cs, θs) =

∏

w N (Zs[w]; µcs,θs[w],Σcs,θs[w]), for all speakers.

• GivenZ, the microphone observations are generated according toP (X|Z) =
∏

w N (X[w];A[w]Z[w],Ψ[w]).

Figure 2 depicts a Bayes Net describing the dependencies that exist between random variables of the model.
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IV. SOURCE INFERENCE

Given a trained probability model speech production and mixing, the problem of estimating the configuration of the underlying

speech sources based on the observed mixtures becomes one ofprobabilistic inference [27], [43], [44], [45].

A. Exact Inference

In this section we consider the application of exact inference under our probability model of speech production and mixing

for two criterion; minimization of the expected mean squareerror of the source vector estimate, and identification of the source

vector of maximum a posteriori probability.

We discover that exact inference under our speech separation model for both estimation criterion will generally be intractable,

thus motivating the requirement for an approximate inference technique to facilitate source vector estimation under the developed

model.

1) Expectation-Based Estimate:One possible choice of source estimate is the conditional expectation of the underlying

speech sources given the microphone observations, which minimizes the expected squared error of the output estimate [36]:

Ẑ = E{Z|X} =

∫

Z

ZP (Z|X)dZ (26)

Because the source densities have been parameterized usingGaussian mixtures, the observation noise has been modelledas

Gaussian, and the relationship between the underlying sources and the microphone observations has been expressed in a linear

form, (26) can be evaluated analytically.

The probability of a source vector configuration,conditionedon a given configuration of thec andθ is Gaussian:

P (Z|c, θ) =
∏

s

∏

w

N (Zs[w]; µcs,θs[w],Σcs,θs[w])

=
∏

w

N (Z[w]; µc,θ[w],Σc,θ[w]) (27)

whereµc,θ[w] = [µT
c1,θ1[w], µ

T
c2,θ2[w], · · · , µT

cS,θS [w]]
T , andΣc,θ[w] = diag[Σc1,θ1[w],Σc2,θ2[w], · · · ,ΣcS ,θS [w]]. The probabil-

ity of an observation vector configuration,conditionedon a given configuration of the source vector is also Gaussian:

P (X|Z) =
∏

w

N (X[w];A[w]Z[w],Ψ[w]) (28)

The conditional posterior of the source vector,P (Z|X, c, θ), can then be written as:

P (Z|X, c, θ) =
P (Z|c, θ)P (X|Z)

∫

Z
P (Z|c, θ)P (X|Z)dZ

=
∏

w

N (Z[w]; µ′
c,θ[w],Σ

′
c,θ[w]) (29)

where:

µ′
c,θ[w] = Σ′

c,θ[w](A[w]T Ψ[w]−1X[w] + Σ−1
c,θ[w]µc,θ[w]) (30)
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Σ′
c,θ[w] = (A[w]TΨ[w]−1A[w] + Σ−1

c,θ[w])
−1 (31)

Given the observation vectorZ and the variablesc andθ, then, the conditional source vector posteriorP (Z|X, c, θ) is Gaussian.

Looking at (30), we can see that the mean (mode) of this Gaussian, at each frequency, is influenced by both the observed

microphone data and the mean of the conditional source priorat that frequency, where the weight assigned to each influence

depends on the relative uncertainty (inverse covariance) of the competing information.

Note that becauseΣc,θ[w] andΨc,θ[w] are covariance matrices their inverses will always exist and be of full rank, and that

the inverse of the mixing matrixA is not required in the computation. As a result we arealways able to compute (30) and

form an estimate the source vector based on the observation vector, regardless of the dimension and sparsity of the mixing

matrix A. The incorporation of prior information about likely configurations of the source vector can be viewed as an optimal

form of regularization.

The expected configuration of the source vectorZ[w] under the marginal posteriorP (Z[w]|X) is given by:

E{Z[w]|X} =

∫

Z[w]

Z[w]P (Z[w]|X)dZ[w]

=
∑

c

P (c|X)
∑

θ[w]

P (θ[w]|c, X[w])E[Z[w]|X[w], c, θ[w]] (32)

where the posterior distributionsP (c|X) andP (θ[w]|c,X[w]) may be computed via:

P (c|X) =

∏

s πcs

∏

w

∑

θ[w] P (X[w]|c, θ[w])
∑

c

∏

s πcs

∏

w

∑

θ[w] P (X[w]|c, θ[w])
(33)

P (θ[w]|c,X[w]) =
P (X[w]|c, θ[w])

∑

θ[w] P (X[w]|c, θ[w])
(34)

where:

P (X[w]|c, θ[w]) =

∫

Z[w]

P (Z[w]|θ[w], c)P (X[w]|Z[w])

=
|Σ′

c,θ[w]|
1/2

(2π)M/2|Σc,θ[w]|1/2|Ψ[w]|1/2
·

e−
1
2{µT

c,θ[w]Σ
−1
c,θ[w]

µ
c,θ[w]+X[w]T Ψ[w]−1

X[w]−µ
′T
c,θ[w]Σ

′

c,θ[w]µ
′

c,θ[w]}

(35)

is the likelihood of{c, θ[w]} given the observed microphone observations.

Looking at the expectation-based estimate result (32), we can see that the overall source estimate, at each frequency, is given

by a weighted average of the conditional expectationsE{Z[w]|X[w], c, θ[w]} over all possible configurations ofc andθ[w],

where the weight assigned to each configuration{c, θ[w]} is given by the posteriorP (c, θ[w]|X) = P (c|X) ·P (θ[w]|c,X[w]).

Note that the expectation-based estimate is coupled over frequency by the speech class posteriorP (c|X).

Because the summation over all configurations ofc andθ[w] in (32) is coupled over the source densities (the computation

of (32) requires that we average overall c = {c1, c2, · · · , cS} andθ[w] = {θ1[w], θ2[w], θS [w]} at each frequency, where each
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configuration{c, θ[w]} defines a unique conditional estimateE{Z[w]|X[w], c, θ[w]}), the computational complexity of the

expectation-based estimateE{Z|X} is exponentially dependent on the number of speech sources,and therefore will generally

become intractable to compute as the number of sources becomes large:

c(E{Z|X}) ∝ N
∏

s

ℵcs
ℵθs[w] ∝ N(〈ℵcs

〉〈ℵθs[w]〉)
S (36)

whereℵvs
denotes the total number of possible configurations of the random variablevs, and 〈ℵvs

〉 denotes the geometric

mean ofℵvs
over s. If each source model is (minimally) parameterized by a 16 component diagonal covariance GMM in the

magnitude spectral domain rotated discretely at 32 intervals for 64 frequency bins, for example, the computation is proportional

to 64 · (16 · 32)S = 25+9S , for a single processing frame of inference (10-50 ms of data).

Note that stochastic dynamic programming (viterbi inference) [1] cannot be applied in this case to efficiently compute the

expectation-based estimate (32) or the required posteriors (33, 34), because source inference is fully coupled by the microphone

observations, at each frequency, by the mixing layer of the model. The presented updates have been simplified as much as

is possible given the structure of the problem formulation.The conditional marginals{P (cs, θs[w]|X, cs−1, θs−1[w])}, if

available, for example, could be used in a stochastic dynamic programming algorithm to do inference, but will generallybe

computationally intractable to compute, because the marginalizations required are fully coupled over the sources.

2) MAP Estimation:An alternative utilization of our model of speech production and mixing is to attempt to identify the

source vector configuration that is of maximum a posteriori probability (MAP) given the observation vector:

Ẑ = arg max
Z

P (Z|X) = argmax
Z

P (Z,X) (37)

Here however, the computation ofP (Z,X) is once again of computational complexity exponential in the number of sources:

P (Z,X) =
∑

c

∑

θ

P (Z,X, c, θ)

=
∑

c

∏

s

πcs ·
∏

w

1

ℵθ[w]

∑

θ[w]

P (X[w]|c,θ[w])P (Z[w]|X[w],c, θ[w]) (38)

c(P (Z,X)) ∝ N(〈ℵcs
〉〈ℵθs[w]〉)

S (39)

and therefore will generally be intractable to compute whenthe number of sources becomes large. The exact computation of

even a local MAP estimate, therefore, will generally not be possible.

B. Approximate Inference

The goal of approximate inference is to facilitate the estimation of hidden variables of interest under a given probability model

and error criterion, when exact techniques are computationally intractable. The challenge is to utilize the information contained

in the full probabilistic description in a way that makes estimation tractably computable, while compromising minimally on

the fidelity of the resulting estimate.
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A fundamental advantage of approximate techniques for inference is that they utilize the full probabilistic description of the

problem to be solved and approximations are made onlyposterior to observing the currently available evidence.

In contrast to the alternative—building a simpler probabilistic description of the problem that facilitates exact inference—

approximate inference techniques are superior in the sensethat they utilize the context provided by the current state of the

observables, thus minimizing the impact of the approximations that must be made to facilitate tractable estimation. Recovery

of the optimal estimate under a given criterion is not assured but often achieved, depending on the problem and the approach

to approximate inference taken.

Several approaches to approximate inference have been developed, including Monte Carlo Sampling techniques, Iterative

Conditional Modes (ICM), Loopy Belief Propagation, and Variational Inference methods [27], [28], [29], [30], [31].

In this section we develop a variational inference algorithm for speech separation that facilitates tractable source vector

estimation under the presented probability model of speechproduction and mixing.

C. Variational Methods and Variational Probabilistic Inference: The Fundamentals

Variational methods may be defined in a broad sense as a collection of approximate techniques for transforming complex

problems into simpler ones, where problem simplification isachieved via the introduction of additional ’variational’parameters,

which are fit to produce an approximate representation of a given problem, that is easier to solve. Generally this is achieved

by defining a variational parametric framework that assumessome amount of decoupling of the degrees of freedom in the

problem, and generally variational representations are fiton a context-dependent basis.

While the ’input’ problem description is normally representative of the problem in general, a given variational description

is generally only representative in a reduced region of ’problem space’. Provided that a given variational descriptionis

representative of the problem instantiation at hand, a solution to the problem can in principle be obtained through the utilization

of the variational description as a surrogate. The fidelity of the solution and the ease in which it is obtained of course depend

on the ability of a chosen variational framework to simultaneously represent the situation and be computationally attractive.

Variational inference in generative probabilistic graphical models is achieved by identifying a surrogate posteriordistribution,

Q(H |E, λ), for the hidden (unobserved) random variables of the model,H , given the currently observed evidence,E, when

the true posterior distribution of the hidden variables,P (H |E), is intractable or expensive to compute. Hereλ represents

the variational parameters of the surrogate distribution,which are set by minimizing the Kullback-Leibler (KL) divergence of

P (H |E) from Q(H |E, λ):

K =
∑

H

Q(H |E, λ) ln
Q(H |E, λ)

P (H |E)
(40)

which may be equivalently minimized by minimizing:

K ′ =
∑

H

Q(H |E, λ) ln
Q(H |E, λ)

P (H, E)

= K − lnP (E) (41)

since the probability of the observed evidence is independent of the variational parametersλ. Note that here we use the notation
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∑

H to denote sums and integrals over the hidden variables inH as appropriate, in the interests of facilitating a general yet

brief discussion.

This effectively transforms an inference problem into an optimization problem: the key to variational inference beingto

define the form of the variational surrogate such that it bothrepresentative, and tractably identifiable via the minimization ofK ′.

OnceQ(H |E, λ∗) has been identified, it may be utilized to make predictions about the configuration of unobserved random

variables of interest. Inference underQ(H |E, λ∗) will generally be computationally inexpensive or trivial,as the assumed

form of Q(H |E, λ) has been chosen so as to facilitate its tractable identification, and therefore will have a decoupled form

relative to the form of true posterior distribution. The utilization of (40) as a criterion for selectingQ(H |E, λ∗) is based upon

some powerful results from convex analysis [46]. A comprehensive introduction to convex variational methods, and variational

probabilistic inference, is given in [28].

D. A Variational Inference Algorithm for Speech Separation

We now develop a variational algorithm for tractable sourceinference under the generative model of speech production and

mixing presented herein.

We define the variational form of the surrogate distributionQ as follows:

Q(Z, θ, c|X) =
∏

s

Q(cs|X) ·
∏

s

∏

w

Q(θs[w]|X) ·
∏

w

Q(Z[w]|X)

=
∏

s

{χcs

∏

w

γθs[w]} ·
∏

w

N (Z[w], η[w], Ω[w]) (42)

where{{χcs
}, {γθs[w]}, {η[w]}, {Ω[w]}} are the variational parameters to be found so thatQ best approximates the true

posterior of the hidden variables under our speech separation model.

To identify Q(Z, θ, c|X) we minimize the KL divergence ofP (Z, θ, c,X) from Q(Z, θ, c|X):

K ′ =
∑

c

∑

θ

∫

Z

Q(Z, θ, c|X) ln
Q(Z, θ, c|X)

P (Z, θ, c,X)
(43)

BecauseQ(Z, θ, c|X) is Gaussian inZ andP (Z|X) is a mixture of Gaussians, the variational parameters that maximizeK

will naturally tend toward a mode ofP (Z|X) [15], [28]. Thus source vector estimation under either the minimum-mean square

or maximum a posteriori criterion onceQ has been identified, reduces to selecting the mean (and mode)of Q(Z), η.

Exploiting the conditional independencies, linearity, Gaussian decomposition of the modelP (Z, θ, c,X), and the factored

form of Q(Z, θ, c|X), we arrive at the following set of coupled fixed point equations for the variational parameters, that may

be iterated (according to any chosen update schedule until parameter convergence) to identifyQ:

χcs
∝ πcs

|Σcs
|−1/2exp{−

1

2

∑

w

∑

θs[w]

γθs[w]dcs,θs[w]} (44)

γθsw
∝ exp{−

1

2

∑

cs

χcs

∑

w

dcs,θs[w]} (45)
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η[w] = Ω[w](A[w]T Ψ[w]−1X[w] + ζ[w]) (46)

Ω[w] = (A[w]TΨ[w]−1A[w] + Φ[w])−1 (47)

dcs,θs[w] = (µcs,θs[w] − ηs[w])T
Σ

−1
cs,θs[w](µcs,θs[w] − ηs[w])

+Tr[Σ−1

cs ,θs [w]Ωs [w]]

Φ[w] = diag[Φ1[w], Φ2[w], · · · ,ΦS [w]]

Φs[w] =
∑

cs

χcs

∑

θs[w]

γθs[w]Σ
−1
cs,θs[w]

ζ[w] = [ζ1[w]T , ζ2[w]T , · · · , ζS[w]T ]T

ζs[w] =
∑

cs

χcs

∑

θs[w]

γθs[w]Σ
−1
cs,θs[w]µcs,θs[w]

The variational update equations (44-47) have intuitive appeal. Examining the update rule for speech class probabilities,χcs
,

for example, reveals that speech classes with associated conditional distributionsP (Zs|cs, θs) =
∏

w N (Zs[w]; µcs,θs[w],Σcs,θs[w])

that are ’close’ to the current estimate of the posterior distribution of the source vectorQ(Zs) =
∏

w N (Zs[w], ηs[w],Ωs[w])

under the metricexp{− 1
2

∑

w

∑

θs[w] γθs[w]dcs,θs[w]} will be assigned high probability. The terms of this metric are weighted

by the posterior distribution of the discrete phase variables,{θs[w]}, {γθs[w]}. The update rule forχcs
for fixed ηs[w], Ωs[w],

andγθs[w] decouples over the sources, but couples the variational inference algorithm over frequency for a given source. The

update rule for the posterior distribution of the discrete phase variablesθs[w], γθs[w], similarly assigns high probability to

configurations ofθs[w] with associated conditional distributionsP (Zs[w]|cs, θs[w]) that are close toQ(Zs) under the metric

exp{− 1
2

∑

cs
χcs

∑

w dcs,θs[w]}, (whose terms are weighted by the posterior distribution ofthe speech classes,χcs
).

The update rule for the posterior estimate of the source vector at frequencyw, η[w], moreover, can be viewed as a weighted

average of a data influence and source model influence terms. Looking at the elements of the termζ[w] corresponding to a given

source,ζs[w], we can see that they are formed based on a weighted average ofthe conditional prior meansµcs,θs[w] associated

with the source, where the weight assigned to each mean is based upon the current estimate of theposteriorprobability of the

configuration{cs, θs[w]} (given by the productχcs
γθs[w]), and the associated conditional prior inverse covarianceΣ−1

cs,θs[w].

Similarly the elements ofΦ[w] associated with a given source,Φs[w] , are formed based on a posterior probability-weighted

average overΣcs,θs[w].

Surveying the variation update equations, we can see that all of the required marginalizations decouple over the sources.

This result is a natural consequence of the chosen structureof the variational surrogate distribution, which assumes that the

posterior distributions associated with the variablesc andθ are not coupled over the sources. Similarly, the chosen structure

of the posterior distribution forZ[w] ensures that source inference is coupled over the sources.

For a given source, inference is coupled over frequency through the speech class posteriorχcs
. The variational algorithm
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is thus able to filter the observation influence towards probable configurations of source spectra through the utilization of the

frequency correlation information contained within the source priors. At a given frequency, inference is also coupledover the

sources by the updates forζ[w] andΩ[w] via correlation information inA[w].

The variational inference algorithm is therefore coupled over the sources and over frequency, but not simultaneously.This

would require that the structure of the surrogate posteriordistribution for the speech classes be coupled over the sources, and

lead to an algorithm that has complexity exponential in the number of sources. Nevertheless, the algorithm does provideus

with a way to intelligently combine available probabilistic information about the underlying sources with information from

the observed source mixtures in a rigorous manner, that is both tractably computable, and intuitively appealing. The algorithm

facilitates the utilization of a full probabilistic description of speech production and mixing, making approximations only

posterior to observing the available evidence.

Because the marginalizations in (44-47) are not coupled over the sources, the computational complexity of the algorithm is

linear rather than exponential in the number of sources:

c(E{Z|X, Q}) ∝ NitsNS〈ℵcs
〉〈ℵθs[w]〉 (48)

whereNits is the number of iterations applied over the fixed point equations for the variational parameters.

The derived variational inference algorithm does not require thatA[w] be invertible, and makes no assumptions about the

number of sources or the number of microphones in the problem. All matrix inversions in the variational update equationsare

on full rank matrices and so stability of the algorithm is ensured. No restrictions on the form ofΨ[w], the covariance of the

microphone noise at a given frequency, have been imposed. The algorithm can thus be applied in principle to the separation of

an arbitrary number of speech sources using an arbitrary number of microphone observations, corrupted by possibly correlated

noise.

Comparing the expectation-based estimate of the source vector under the exact posterior distribution of the hidden variables

(32) to the expected value of the source vector under our variational distribution,η[w] (46), we see that in the variational

estimate the marginalizations overθ andc have effectively been takeninsideµ′
c,θ[w] and decoupled over both frequency and

the sources, and the posterior distributionsP (c|X) and P (θ[w]|c,X[w]) have been replaced by the variational distribution

posterior estimatesχcs
(44) andγθs[w] (45). Looking at the update rules forη[w] andΩ[w] (46,47), and comparing their form

to that of µ′
c,θ[w] and Σ′

c,θ[w] (30,31), we can see thatΦ[w] and ζ[w] can be viewed as the covariance and un-normalized

mean of a Gaussian that summarizes (a local region of) the source vector prior.

The maximum a posteriori estimate of the source vector underQ is alsoη. Because the variational formulation is Gaussian

in Z and the true posterior is a mixture of Gaussians, values ofη that minimizeK ′ will correspond to modes of the true

posterior. The variational update equations can thereforebe alternatively viewed as a directed form of gradient ascent on the

true posterior in a region local (in variational parameter space) to the initialization of the variational parameters.Recall that

in section IV-A.2 we showed that the exact computation of even a local MAP estimate will generally not be possible.
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V. A N APPLICATION EXAMPLE

In this section we step through an application example, to illustrate the operation of the presented variational speechseparation

algorithm. Our goal here is to convey a qualitative sense of how the algorithm works and the results it can produce. Further

results and related discussion are presented in section VI.Here we consider the problem of separating 3 far-field speechsources,

using only 2 (20 dB Gaussian noise corrupted) microphone observations.

A. Setup

Three subsets of the Wall Street Journal speech database:{4BFC (0201-021G, 0301-031C, 0401-041E)}, {4B5C (0201-

021E, 0301-031G, 0401-041C)}, {466C (0201-021E, 0301-031F, 0401-041D)}, each consisting of approximately 12.5 minutes

of dictated speech sampled at 16 kHz, were normalized to a common average power (the average power of each subset was

computed by excluding all 8 ms segments with average power below a manually set silence threshold), and used to define the

underlying speech sources for the results presented herein. The data of each speaker was then further partitioned into 3sets

of size 50%, 25% and 25% to define training, validation, and test data sets, respectively.

To generate simulated microphone observations for the testscenario, the underlying source signals were mixed at stationary

TDOA values of[7,−7, 2] ∗ 62.5µs (which corresponds to source direction of arrivals (DOAs) of 22 degrees, -22 degrees, and

6 degrees, respectively, for a 2 element microphone array separated by 0.4 meters, for example), and then corrupted by 20dB

IID Gaussian noise, defined relative to the average power of the underlying speech sources.

The source signals and resulting signal mixtures were then partitioned into 16 ms segments overlapped in time by 8 ms, and

the 256-point hanning-windowed FFT of all segments taken. The 0-4 kHz portion of the FFT of each segment was retained

(64 points) to define the frequency spectrum of the sources and microphone observations for each processing frame. Perfect

TDOA information was used to define{A[w]}, and full knowledge of the statistics of the corrupting microphone noise was

used to define{Ψ[w]}, the conditional covariance of the noise in the observationvector{X[w]}. 2

Using knowledge of the separated source spectra, a 16 component GMM model of speech in the magnitude spectral domain

was learned for each source independently via Expectation Maximization (EM) [30], based on their respective training sets. It

was experimentally found that the domain setting{θs[w]} = {0 : π
16 : 31π

16 } produced contiguous, phase invariant probability

rings at all frequencies, for all speech classes, and all speech models, forΣcs,θs[w] defined by the isometric expansion of

cluster variance identified during training in the magnitude domain. The resulting model of each speech source in the spectral

domain is thus a mixture of3264 · 16 Gaussians. For all the results presented herein, the variational equations (44-47) where

updated according to the following schedule (which was empirically found to work well) until parameter convergence : 1)

Update allγθs[w], 2) Update allΩ[w], 3) Update allχcs
, 4) Update allη[w], 5) Goto step 1). For each processing frame the

variational parametersγθs[w] and χcs
where initialized randomly,η[w] was initialized by (49), andΩ[w] was initialized as

a diagonal matrix with entriesmaxcs
Σcs

[w] (2 entries for each source), whereΣcs
[w] is the variance of speech classcs at

frequency binw, as identified during training in the magnitude spectral domain.

2If the TDOAs are not known exactly and/or the mixtures contain acoustic echos, the source likelihood function defined by{A[w]} will be noise corrupted:
the degree of noise corruption depending on how noisy the TDOA estimates are, how much multi-path there is, and how many microphone observations there
are. In this paper, we focus on the problem of separating delayed, additive noise corrupted speech mixtures, where the TDOAs of all underlying sources are
known.
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B. Performance Quantification

Here we will quantify the performance of the variational speech separation algorithm in terms of the average SNR Gain in

decibels obtained over simply taking a microphone reading as our estimate of each of source:

SNR Gain = 10log10

∑

S ||Zs| − |Xm||2
∑

S ||Zs| − |Ẑsv
||2

(49)

where |Zs| is the magnitude spectrum of sources, |Ẑsv
| is the magnitude spectrum of the variational estimate of|Zs|, and

|Xm| is the magnitude spectrum of microphonem, wherem is arbitrary. The metric is based upon the magnitude spectraof

the underlying speech sources since the magnitude spectrum(or a transform of it) is the standard input to the majority of

today’s state-of-the-art speech recognizers [1], [15], [25].

We will also compare the separation results obtained by variational inference under our probabilistic speech separation model

to the following minimum norm constrained data inversion ofthe microphone observations, given the TDOA ensemble of all

sources:

Ẑnc[w] = (A[w]T A[w] + 0.1I)−1A[w]T X[w], all w (50)

and denote the magnitude spectrum of the norm-constrained estimate of sources by |Ẑsnc
|.

C. Results

Figure 3 depicts a typical example of the separation resultsobtained for the three source, two microphone test scenariowe

are considering here, for several iterations of variational inference. In this situation, the separation problem is underconstrained

by (at least) 2 dimensions at each frequency bin, and 128 dimensions overall. We can see that the norm-constrained data

inversion based estimate of the magnitude spectra of the underlying sources is highly corrupted by cross-talk.

As variational inference proceeds, frequency correlationinformation in the source priors steers the source estimates toward

likely spectral configurations of speech, and at each frequency, information in the mixing layer of the model couples inference

across the sources. The result is that the algorithm is automatically able to detect and filter out source crosstalk, and ’fill in’

unreliable, noise corrupted regions of the frequency spectrum. After 14 iterations of variational inference, the corrupting noise

and source cross-talk have been almost completely removed,yielding good quality estimates of the magnitude spectrum of all

sources.

Figure 4 depicts plots of the source vector gain and Kullback-Leibler divergenceK ′ of the joint distributionP from the

surrogate distributionQ as a function of the number of iterations of variational inference. We can see that in this case, both

K ′ and the source vector gain of the variational estimate stabilize after about 14 iterations.K ′ is the cost function we are

minimizing to identifyQ, and because the minimization is (variational parameter) gradient based, is a non-increasing function

of the number iterations of inference. The stabilization ofK ′ can thus be used as a criterion for terminating inference.

Over the entire test set, a 12.5 dB SNR gain over taking a microphone observation as each source estimate (6.8 dB for

norm-constrained data inversion) was achieved via our variational speech separation algorithm. Because we are doing speech

separation in the full spectral domain, the algorithm is automatically able to recover estimates of the spectral phase of all
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|Ẑ3v
|

Fig. 3. Plots of the magnitude spectra of underlying sources|Zs| versus their variational estimates|Ẑsv |, for several iterations of variational
inference; for a case where there are 3 underlying sources, but only 2 observed signal mixtures (microphone observations), each corrupted
by 20 dB IID Gaussian noise. Hereτ = {7,−7, 2} ∗ 62.5µs. The norm-constrained estimates|Ẑsnc | (derived from equation (50)), have
also been included in the plots for comparative purposes.

underlying sources, facilitating the direct transformation of the obtained source estimates into the time domain. Informal

listening tests reveal that there is minimal cross-talk in the directly transformed time-domain source signal estimates, and that

satisfactory estimates of the spectral phase of the underlying sources have been recovered, as the resulting signal estimates are

of high perceptual quality.

For the (dimensionally small) speech separation scenario we are considering here, exact inference is on the order of

(〈ℵcs 〉〈ℵθs[w]〉)
S

S〈ℵcs 〉〈ℵθs[w]〉
≈ 105 times more computationally more expensive than an iteration of variational inference. For this test

scenario, 15 iterations of variational inference (per processing frame) were required on average, over the test set, toreach

estimate convergence. One iteration of variational inference takes approximately 1 second to execute on a 2.2 GHz pentium

machine running Matlab (version 6.1) code. For this test scenario then, variational inference on a single frame of processing

data (16ms) takes about 15 seconds on average, while exact inference is estimated to take on the order of105 seconds, or

approximately30 hours per 16 ms processing frame.
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Fig. 4. Plots of the source vector gain, and Kullback-Leibler divergence of the joint distributionP from the surrogate distributionQ (K′),
as a function of the number of iterations of variational inference, for the processing frame depicted in figure 3.

TABLE I

AVERAGE SNRGAIN (49) PERFORMANCE OF THE VARIATIONAL ALGORITHM, AS A FUNCTION OF THE NUMBER OF SOURCES, THE NUMBER OF

MICROPHONES, AND THE NOISE LEVEL. PERFORMANCE RESULTS FOR THENC ESTIMATE (50) ARE INCLUDED IN BRACKETS. THE (SIMULATED)

POSITION ENSEMBLES OF THE SPEAKERS AND MICROPHONES AREρs = {[3.451, 3], [−3.451, 3], [0.666, 3], [−1.026, 3]} AND

ρm = {[0, 0.1], [0,−0.1], [0, 0.3], [0,−0.3], [0, 0.5], [0,−0.5], [0, 0.7], [0,−0.7]}, RESPECTIVELY.

Num. Num. Microphone Noise Level
Sources Mics. 20 dB 10 dB 0 dB

2 2 24.9 (14.5) 20.8 (13.2) 12.0 (5.8)
3 2 25.2 (14.1) 19.7 (13.1) 12.9 (8.2)
3 2 11.3 (7.8) 10.8 (7.8) 7.6 (7.1)
4 2 9.5 (8.0) 9.2 (8.0) 8.3 (8.0)
2 4 28.9 (20.9) 22.8 (16.8) 12.8 (9.1)
2 8 16.9 (12.3) 16.9 (12.3) 17.5 (12.6)

VI. RESULTS AND DISCUSSION

Table I summarizes the source vector gain performance of ourvariational algorithm for the case of as many sources as

microphones, mores sources than microphones, and more microphones than sources, for several test scenarios: where thetest

setup, utilized source models, and reported gain measures for each scenario are as defined in section V. One addition is the

definition of a fourth source, whose data set was constructedfrom the segments{46AC (0201-021G,0301-031D,0401-041D)}

of the WSJ database. The source vector gains achieved via thenorm-constrained inversion estimate (50) have also been included

in the tables, in brackets, for comparative purposes.

A discussion of the results within the context of existing work on separating delayed, noisy speech mixtures for the caseof

as many sources as microphones, more sources than microphones, and more microphones than sources follows. Because the

simultaneous incorporation of detailed models of speech and source time-delay ensemble information under a TDOA-based

problem formulation is a novel approach to the speech separation problem, it is difficult to directly compare the obtained

results to those reported in previous work. As such, we will be diligent in pointing out differences in the assumptions made by

the algorithms being compared. One important point of note is that the source models utilized in obtaining the reported results

are source specific 16 GMM models. In further experiments, however, results of indistinguishable fidelity were achievedusing

a 64 GMM speaker-independent model trained on a WSJ segment consisting of 6 speakers.

1) Equal Number of Sources and Microphones:For the case of square mixing we will compare the performanceof the

variational algorithm to two state-of-the-art approachesfor the separation of delayed, noisy speech mixtures; one that utilizes

advanced probability modelling techniques to incorporatespeech models into the estimation process as we have done here,
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and one that uses only TDOA information to perform speech separation.

In [17], Attias develops a speech separation algorithm based upon the utilization of zero-mean GMM-based representations

of the underlying speakers, and a fully unconstrained mixing matrix, which is learned. For the case of 5 sources, 5 microphones,

and 10 dB additive Gaussian noise corruption, Attias achieves a source vector gain over using a microphone reading as the

estimate of each source of only 3.7 dB. For 3 microphones and 2sources, he obtains a gain of only 4.4 dB. Results for the

case of 2 sources and 2 microphone though not presented, can be safely assumed to lie near these results. Our variational

algorithm, conversely, for the square mixing scenarios tested at 10 dB noise corruption, achieves average source vector gains

of approximately 20 dB: over 7 dB higher than the result obtained using via norm-constrained data inversion, and over 15 dB

higher than the results obtained by Attias. The large discrepancy in the obtained results is to be expected. Attias’s algorithm

is blind, and therefore the learned source densities will contain cross-talk, the level of noise corruption is indeterminant, and

the mixing matrix estimation is both corrupted by source state decision errors, and determinable only up to an arbitraryscale.

By performing separation based on phase diversity, we are able to overcome all of these difficulties by utilizing information

that can be reasonably assumed to be available.

In [4], [35], Aarabi and Shi present dynamic phase error-based punishment schemes for TDOA-based speech enhancement.

These methods can also be applied to the separation of speechsources. For the case of two time-delayed sources with common

power, source vector gains of approximately 10 dB have been obtained. In contrast to our algorithm, these approaches do

not incorporate prior information about the nature of speech into the estimation process, and estimate each speech source

independently.

2) More Sources than Microphones:In the case of underdetermined mixing, no algorithm in literature that performs the

separation of delayed, noisy sources could be identified. More generally, there is relatively little published literature on the

problem of source separation when there are more sources than mixtures. Several approaches have been developed, however,

for the case of both instantaneous mixing of independent sources, and assumed approximate or exact knowledge of the mixing

matrix. Here we will discuss the results obtained by two of the most successful approaches we identified in current literature.

In [47], Vielva and Principe present an interesting algorithm for underdetermined source separation using knowledge of the

mixing matrix, which operates essentially by classifying each underlying source as active or inactive, and then performing direct

or minimum norm regularized inversion based on the classification. At a source sparsity factor of 12.5%, which corresponds

to three independent sources that are active 50% of the time (as independently dictated speech would be) the algorithm was

able to improve on minimum-norm based pseudo-inversion by less than 1 dB for the case of 3 sources, 2 observations and

zero noise. At 70% and 90% source sparsity and 3 sources, 2 mixed observations and zero noise, gains over pseudo-inversion

of over 4 dB and 10 dB were obtained.

Our variational algorithm, in contrast, achieves gains of 3dB over norm-constrained inversion with 10 dB and 20 dB noise

corruption at a source sparsity of 12.5%. Vielva and Principe’s work, does show, however, that when the sources are very

sparse (as is often the case in conversational speech), sparsity is an important separation queue. The incorporation ofsparsity

constraints into the source separation framework presented here is avenue of research we are currently pursuing.

In [48] Te-Won Lee et. al. develop a blind, probabilistic ICA-based approach to underdetermined speech separation in the time
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domain. Results for the separation of three speech sources using two mixed observations are reported forinstantaneously mixed

speech and various levels of Gaussian observation noise corruption. For 10 dB observation noise corruption post-processed

SNRs of approximately 8.5 dB are reported, where post-processing includes application of the algorithm andrelative scale

correction. Our variational algorithm in contrast yielded an average SNR at 10 dB noise corruption of 9.5 dB with no scale

correction post-processing.

3) More Microphones than Sources:For the overdetermined source separation of time delayed mixtures corrupted by additive

noise, knowledge of the TDOA ensembles is very strong information. The variational algorithm nevertheless obtains results

that are on average about 5 dB higher than those obtained via norm-constrained inversion. Because TDOA information is such

a strong constraint when there are more microphones than sources and only additive noise, it is not worthwhile to compare

the results of algorithms that do not use TDOA information. Those algorithms that do use TDOA information, as previously

discussed, estimate the configuration of each source independently, and do not utilize prior information about the nature of

speech.

VII. C LOSING REMARKS

In this paper, a new variational inference algorithm for multi-microphone probabilistic speech separation was presented.

For the problem of separating delayed, additive noise corrupted speech mixtures, the algorithm is able to improve upon

the SNR gain performance of existing state-of-the-art probabilistic and TDOA-based speech separation algorithms by over 10

dB. This significant performance improvement is obtained bycombining TDOA information with prior information about the

nature of speech, under a novel probabilistic description of the speech production and mixing process. The method is capable

of recovering high quality estimates of the underlying speech sources under these conditions, even when there aremoresources

than microphone observations.

An important direction of future work is the extension of thepresented framework to the more general scenario of only

noisy or partially available source TDOA information, and significant non-stationary acoustic multi-path.

REFERENCES

[1] L. Rabiner and B. Juang.Fundamentals of Speech Recognition. Prentice-Hall, New Jersey, 1993.

[2] B.J. Frey, L. Deng, A. Acero, and T. Kristjansson. Algonquin: Iterating laplace’s method to remove multiple types ofacoustic distortion for robust

speech recognition. InEurospeech, September 2001.

[3] H. Attias, J.C. Platt, A. Acero, and L. Deng. Speech denoising and dereverberation using probabilistic models. InProceedings of NIPS, December 2001.

[4] G. Shi and P. Aarabi. Robust digit recognition using phase-dependent time-frequency masking. InProceedings of ICASSP, April 2003.

[5] A. Hyvarinen and E. Oja. Independent component analysis: algorithms and applications.Neural Networks, 113(4):411–430, 2000.

[6] A.J. Bell and T.J. Sejnowski. A non-linear information maximization algorithm that performs blind separation. InProceedings of NIPS, December 1995.

[7] J. Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE, Special Issue on Blind Identification and Estimation, 86(10):2009–

2025, 1998.

[8] T. Lee, M.S. Lewicki, and T.S. Sejnowski. ICA mixture models for unsupervised classification and automatic context switching. In Proceedings of ICA

and BSS, January 1999.

[9] K. Torkkola. Blind separation of delayed sources based on information maximization. InProceedings of ICASSP, April 1996.

[10] K. Torkkola. Blind separation of convolved sources based on information maximization. InProceedings of INNSP, September 1996.



26

[11] T.-W. Lee, M. Girolami, A.J. Bell, and T.J Sejnowski. A unifying information-theoretic framework for independentcomponent analysis.Computers and

Mathematics with Applications, 31(11):1–21, March 2000.

[12] Z. Xiong and T.S. Huang. Nonlinear independent component analysis using power series and application to blind source separation. InProceedings of

ICA and BSS, December 2001.

[13] P. De Leon and Y. Ma. Blind source separation of mixturesof speech signals with unknown propagation delays. InProceedings of the 140th Meeting

of the Acoustical Society of America, 2000.

[14] K. Shikano H. Saruwatari, T. Kawamura. Blind source separation for speech based on a fast-convergence algorithm with ICA and beamforming. In

Eurospeech, September 2001.

[15] B.J. Frey, T. Kristjansson, L. Deng, and A. Acero. Learning dynamic noise models from noisy speech for robust speechrecognition. InProceedings of

NIPS, December 2001.

[16] H. Attias. Independent factor analysis.Neural Computation, 11(4):803–851, 1999.

[17] H. Attias. Source separation with a sensor array using graphical models and subband filtering. InProceedings of NIPS, December 2002.

[18] M. Plumpe L. Deng, A. Acero and X. Huang. Large-vocabulary speech recognition under adverse acoustic environments. In Proceedings of ICSLP,

2000.

[19] C.H. Lee and J.L. Gauvain. Speaker adaptation based on map estimation of hmm parameters. InProceedings of ICASSP, 1993.

[20] H. Attias and C. E. Schreiner. Blind source separation and deconvolution: the dynamic component analysis algorithm. Neural Computation, 10(6):1373–

1424, 1998.

[21] F. Ehlers and H. Schuster. Blind separation of convolutive mixtures and an application in automatic speech recognition in noisy environment.IEEE

Transactions on Signal Processing, 45(10):2608–2609, 1997.

[22] C.V. Alvino L.C. Parra. Geometric source separation: Merging convolutive source separation with geometric beamforming. IEEE Transactions on Speech

and Audio Processing, 10(6), 2002.

[23] K. Torkkola. Blind separation for audio signals—are wethere yet? InProceedings of ICA and BSS, 1999.

[24] M.S. Brandstein. On the use of explicit speech modelingin microphone array applications. InProceedings of ICASSP, May 1998.

[25] A.Acero, S. Altschuler, and L. Wu. Speech/noise separation using two microphones and a VQ model of speech signals. In Proceedings of ICSLP,

October 2000.

[26] S. Rennie, P. Aarabi, T. Kristjansson, B.J. Frey, and K.Achan. Robust variational speech separation using fewer microphones than speakers. In

Proceedings of the 2003 IEEE Conference on Acoustics, Speech, and Signal Processing, April 2003.

[27] M. Jordan.An Introduction to Probabilistic Graphical Models. (to appear).

[28] M.I Jordan, Z. Ghahramani, T. Jaakkola, and L.K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183–233,

1999.

[29] D.J.C. MacKay. Introduction to Monte Carlo methods. InM. I. Jordan, editor,Learning in Graphical Models, NATO Science Series, pages 175–204.

Kluwer Academic Press, 1998.

[30] C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press Inc., New York, 1995.

[31] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factorgraphs and the sum-product algorithm.IEEE Transactions on Information Theory, Special Issue

on Codes on Graphs and Iterative Algorithms, 47(2):498–519, February 2001.

[32] P. Aarabi and S. Zaky. Iterative spatial probability based sound localization. InProceedings of the 4th World Multiconference on Circuits, Systems,

Computers, and Communications, July 2000.

[33] P. Aarabi. The fusion of distributed microphone arraysfor sound localization.EURASIP Journal of Applied Signal Processing (Special Issue on Sensor

Networks), 2003 No. 4:338:347, March 2003.

[34] M.S. Brandstein.A Framework for Speech Source Localization Using Sensor Arrays. PhD thesis, Brown University, May 1995.

[35] G. Shi, P. Aarabi, and N. Lazic. Adaptive time-frequency data fusion for speech enhancement. InProceedings of Information Fusion, July 2003.

[36] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer-Verlag, 2001.

[37] L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.Proceedings of the IEEE, 77(2), 1989.

[38] Y. Ephraim and L.R. Rabiner. A minimum discrimination information approach for hidden markov modeling.IEEE Transactions on Information Theory,

35:1001–1013., 1989.

[39] H Attias. New EM algorithms for source separation and deconvolution. InProceedings of ICASSP, April 2003.



27

[40] P. Aarabi. The application of spatial likelihood functions to multi-camera object localization. InProceedings of Sensor Fusion, April 2001.

[41] C. H. Knapp and G. Carter. The generalized correlation method for estimation of time delay.IEEE Transactions on Acoustics, Speech and Signal

Processing, ASSP-24(4):320–327, August 1976.

[42] F. Theis and E. Lang. Geometric overcomplete ICA. InProceedings of ESANN, April 2002.

[43] S.Kay. Fundamentals of Statistical Signal Processing: Volume I: Estimation Theory. Prentice-Hall, 1993.

[44] A. Leon-Garcia.Probability and Random Processes (2nd edition). Addison-Wesley, 1994.

[45] A. Papoulis.Probability, Random Variables, and Stochastic Processes (3rd edition) publisher =.

[46] T. Rockafellar.Convex Analysis. Princeton University Press, 1996.

[47] L. Vielva, D. Erdogmus, and J. C. Prncipe. Underdetermined blind source separation using a probabilistic source sparsity model. InProceedings of ICA

and BSS, December 2001.

[48] T.-W. Lee, M.S. Lewicki, M. Girolami, and T.J. Sejnowski. Blind source separation of more sources than mixtures using overcomplete representations.

IEEE Signal Processing Letters, 4(6), 1999.

Steven Rennie is currently pursuing his doctorate at the Edward S. Rogers Sr. Department of Electrical and Computer Engineering,

University of Toronto. Prior to returning to academia he spent 3 years at SPAR Aerospace (and then MD Robotics) developing the

International Space Station CanadaArm and Special PurposeDextrous Manipulator robotic systems. His current research interests

include robust speech processing, probabilistic reasoning, and multi-sensor fusion. In addition to his teaching and research at the

University of Toronto, he has enjoyed two research internships with IBM’s Human Language Technologies department at the T.J.

Watson Research Center in New York, since beginning his doctorate in 2003.

Parham Aarabi is a Canada Research Chair in Multi-Sensor Information Systems, a tenured Associate Professor in The Edward S.

Rogers Sr. Department of Electrical and Computer Engineering, and the founder and director of the Artificial PerceptionLaboratory.

He received his Ph.D. (2001) in Electrical Engineering fromStanford University, M.A.Sc. (1999) in Computer Engineering from

the University of Toronto, and B.A.Sc. (1998) in Engineering Science (Electrical Option) from the University of Toronto. His recent

awards include the 2002, 2003, and 2004 Professor of the YearAwards, the 2003 Faculty of Engineering Early Career Teaching

Award, the 2004 IEEE Mac Van Valkenburg Early Career Teaching Award, the 2005 Gordon Slemon Award, the 2005 TVO Best

Lecturer (Top 30) selection, the Premier’s Research Excellence Award, as well as MIT Technology Review’s 2005 TR35 ”World’s Top

Young Innovator” Award. His current research, which includes multi-sensor information fusion, human-computer interactions, and hardware implementation of

sensor fusion algorithms, has appeared in over 50 peer-reviewed publications and covered by media such as the New York Times, MIT’s Technology Review

Magazine, Scientific American, Popular Mechanics, and the Discovery Channel.

Brendan J. Frey is a faculty member in Electrical and Computer Engineering at the University of Toronto, and is cross-appointed

to Computer Science and the Centre for Cellular and Biomolecular Research. He was born on August 29, 1968, in Calgary, Alberta

near the foothills of the Rocky Mountains, where he enjoyed hiking and camping with his family. In 1979, he started writing

computer programs, attaching sensors to his home computer,and building simple robots. His university education was inthe areas

of engineering, physics and computer science, culminatingwith a doctorate at the University of Toronto. From 1997 to 1999, Frey

was a Beckman Fellow at the University of Illinois at Urbana-Champaign, where he continues to be an adjunct faculty member

in Electrical and Computer Engineering. From 1998 to 2001, he was a faculty member in Computer Science at the University of

Waterloo. Currently, Frey is head of the PSI-Group at the University of Toronto. He has received several awards, given over 80 invited talks and published

over 100 papers on probabilistic inference and learning algorithms in the areas of vision, molecular biology, signal processing and error-correcting decoding.

More information on his past and current projects is available on his research group’s website, http://www.psi.toronto.edu.


